Synthesis 2018; 50(12): 2337-2346
DOI: 10.1055/s-0037-1609445
paper
© Georg Thieme Verlag Stuttgart · New York

Iodine-Catalyzed Oxidative Cross-Dehydrogenative Coupling of Quinoxalinones and Indoles: Synthesis of 3-(Indol-2-yl)quinoxalin-2-one under Mild and Ambient Conditions

Medena Noikham
Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand   Email: sirilata.yot@mahidol.ac.th
,
Tanakorn Kittikool
Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand   Email: sirilata.yot@mahidol.ac.th
,
Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand   Email: sirilata.yot@mahidol.ac.th
› Author Affiliations
We acknowledge financial support from Thailand Research Fund (RSA5980008 and DBG6080007), Center of Excellence for Innovation in Chemistry (PERCH-CIC), Office of the Higher Education Commission (OHEC), Ministry of Education and Faculty of Science, and Mahidol University.
Further Information

Publication History

Received: 25 January 2018

Accepted after revision: 09 March 2018

Publication Date:
04 April 2018 (online)


Abstract

A highly efficient iodine-catalyzed oxidative cross-dehydrogenative coupling reaction of quinoxalinones and indoles has been developed. Without the requirement of peroxide and acid, this reaction utilizes a catalytic amount of molecular iodine to facilitate the C–C bond formation under ambient air. This simple and easy-to-handle protocol represents an interesting synthetic alternative with a good scope and functional group compatibility.

Supporting Information

 
  • References


    • For selected reviews, see:
    • 1a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1b Yeung CS. Dong VM. Chem. Rev. 2011; 111: 1215
    • 1c Waterman R. Chem. Soc. Rev. 2013; 42: 5629
    • 1d Li C.-J. From C–H to C–C Bonds: Cross-Dehydrogenative-Coupling . Royal Society of Chemistry; Cambridge: 2014
    • 1e Kozlowski MC. Acc. Chem. Res. 2017; 50: 638
    • 1f Qin Y. Zhu L. Luo S. Chem. Rev. 2017; 117: 9433
    • 1g Lakshman MK. Vuram PK. Chem. Sci. 2017; 8: 5845

      For selected reviews and recent examples, see:
    • 2a Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
    • 2b Le Bras J. Muzart J. Chem. Rev. 2011; 111: 1170
    • 2c Shi Z. Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 2d Song G. Wang F. Li X. Chem. Soc. Rev. 2012; 41: 3651
    • 2e Mousseau JJ. Charette AB. Acc. Chem. Res. 2013; 46: 412
    • 2f Li B. Dixneuf PH. Chem. Soc. Rev. 2013; 42: 5744
    • 2g Girard SA. Knauber T. Li CJ. Angew. Chem. Int. Ed. 2014; 53: 74
    • 2h Yang Y. Lan J. You J. Chem. Rev. 2017; 117: 8787
    • 2i Pan C. Huang B. Hu W. Feng X. Yu J.-T. J. Org. Chem. 2016; 81: 2087
    • 2j Sharma R. Abdullaha M. Bharate SB. J. Org. Chem. 2017; 82: 9786
    • 2k Chen X. Cui X. Yang F. Wu Y. Org. Lett. 2015; 17: 1445
    • 2l Varun BV. Dhineshkumar J. Bettadapur KR. Siddaraju Y. Alagiri K. Prabhu KR. Tetrahedron Lett. 2017; 58: 803
  • 3 Liu C. Yuan J. Gao M. Tang S. Li W. Shi R. Lei A. Chem. Rev. 2015; 115: 12138

    • For selected examples, see:
    • 4a He C.-Y. Fan S. Zhang X. J. Am. Chem. Soc. 2010; 132: 12850
    • 4b Gong X. Song G. Zhang H. Li X. Org. Lett. 2011; 13: 1766
    • 4c Wu Y. Li B. Mao F. Li X. Kwong FY. Org. Lett. 2011; 13: 3258
    • 4d Liu W. Li Y. Wang Y. Kuang C. Org. Lett. 2013; 15: 4682
    • 4e Liu W. Yu X. Li Y. Kuang C. Chem. Commun. 2014; 50: 9291
    • 4f Storr TE. Namata F. Greaney MF. Chem. Commun. 2014; 50: 13275
    • 4g Bartoccini F. Cannas DM. Fini F. Piersanti G. Org. Lett. 2016; 18: 2762
    • 4h Kianmehr E. Fardpour M. Kharat AN. Eur. J. Org. Chem. 2017; 3017

      For selected examples, see:
    • 5a Yin W. He C. Chen M. Zhang H. Lei A. Org. Lett. 2009; 11: 709
    • 5b Jin L.-K. Wan L. Feng J. Cai C. Org. Lett. 2015; 17: 4726
    • 5c Luo F.-X. Cao Z.-C. Zhao H.-W. Wang D. Zhang Y.-F. Xu X. Shi Z.-J. Organometallics 2017; 36: 18
    • 5d Wang X. Xie P. Qiu R. Zhu L. Liu T. Li Y. Iwasaki T. Au C.-T. Xu X. Xia Y. Yin S.-F. Kambe N. Chem. Commun. 2017; 53: 8316
    • 5e Soni V. Khake SM. Punji B. ACS Catal. 2017; 7: 4202

      For selected examples, see:
    • 6a Li Z. Bohle DS. Li C.-J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 8928
    • 6b Fan S. Chen Z. Zhang X. Org. Lett. 2012; 14: 4950
    • 6c Zhang C. Tang C. Jiao N. Chem. Soc. Rev. 2012; 41: 3464
    • 6d Huang X.-F. Salman M. Huang Z.-Z. Chem. Eur. J. 2014; 20: 6618
    • 6e Wang R. Li Y. Jin R.-X. Wang X.-S. Chem. Sci. 2017; 8: 3838

      For selected examples, see:
    • 7a Shirakawa E. Uchiyama N. Hayashi T. J. Org. Chem. 2011; 76: 25
    • 7b Brzozowski M. Forni JA. Savage GP. Polyzos A. Chem. Commun. 2015; 51: 334
    • 7c Liu L.-W. Wang Z.-Z. Zhang H.-H. Wang W.-S. Zhang J.-Z. Tang Y. Chem. Commun. 2015; 51: 9531
    • 7d Su H. Wang L. Rao H. Xu H. Org. Lett. 2017; 19: 2226

      For selected reviews on synthetic use of molecular iodine, see:
    • 8a Kupper FC. Feiters MC. Olofsson B. Kaiho T. Yanagida S. Zimmermann MB. Carpenter LJ. Luther GW. III. Lu Z. Jonsson M. Kloo L. Angew. Chem. Int. Ed. 2011; 50: 11598
    • 8b Finkbeiner P. Nachtsheim BJ. Synthesis 2013; 45: 979
    • 8c Ren Y.-M. Cai C. Yang R.-C. RSC Adv. 2013; 3: 7182
    • 8d Wu X.-F. Gong J.-L. Qi X. Org. Biomol. Chem. 2014; 12: 5807
    • 8e Yusubov MS. Zhdankin VV. Resource-Efficient Technol. 2015; 1: 49
    • 8f Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 8g Kohlhepp SV. Gulder T. Chem. Soc. Rev. 2016; 45: 6270

      For selected examples, see:
    • 9a Wan C. Gao L. Wang Q. Zhang J. Wang Z. Org. Lett. 2010; 12: 3902
    • 9b Wang Q. Wan C. Gu Y. Zhang J. Gao L. Wang Z. Green Chem. 2011; 13: 578
    • 9c Yan Y. Wang Z. Chem. Commun. 2011; 47: 9513
    • 9d Tian J.-S. Ng KW. J. Wong J.-R. Loh T.-P. Angew. Chem. Int. Ed. 2012; 51: 9105
    • 9e Liu D. Lei A. Chem. Asian J. 2015; 10: 806
    • 9f Wu X. Geng X. Zhao P. Wu Y.-D. Wu A.-X. Org. Lett. 2017; 19: 4584
    • 10a Joule JA. Mills K. Heterocyclic Chemistry . 4th ed. Blackwell Science; Oxford: 2000
    • 10b Akins PT. Atkinson RP. Curr. Med. Res. Opin. 2002; 18: 9
    • 10c Mamedov VA. Zhukova NA. Prog. Heterocycl. Chem. 2013; 25: 1

      For reviews, see:
    • 11a Rangisetty JB. Gupta CN. V. H. B. Prasad AL. Srinivas P. Sridhar N. Parimoo P. Veeranjaneyulu A. J. Pharm. Pharmacol. 2001; 53: 1409
    • 11b Carta A. Piras S. Loriga G. Paglietti G. Mini-Rev. Med. Chem. 2006; 6: 1179
    • 11c Li X. Yang K.-H. Li W.-L. Xu W.-F. Drugs Future 2006; 31: 979
    • 11d Chen D. Bao W. Adv. Synth. Catal. 2010; 352: 955
    • 11e Jeon SO. Lee JY. J. Mater. Chem. 2012; 22: 7239
    • 11f Quinn J. Guo C. Ko L. Sun B. He Y. Li Y. RSC Adv. 2016; 6: 22043
    • 12a Heldin CH. Westermark B. Cell Regul. 1990; 1: 555
    • 12b Myers MR. He W. Hanney B. Setzer N. Maguire MP. Zulli A. Bilder G. Galzcinski H. Amin D. Needle S. Spada AP. Bioorg. Med. Chem. Lett. 2003; 13: 3091
    • 12c He W. Myers MR. Hanney B. Spada AP. Bilder G. Galzcinski H. Amin D. Needle S. Page K. Jayyosi Z. Perrone MH. Bioorg. Med. Chem. Lett. 2003; 13: 3097
    • 12d Gazit A. Yee K. Uecker A. Bohmer FD. Sjoblom T. Ostman A. Waltenberger J. Golomb G. Banai S. Heinrich MC. Levitzki A. Bioorg. Med. Chem. 2003; 11: 2007
    • 12e Nixey T. Tempest P. Hulme C. Tetrahedron Lett. 2002; 43: 1637
    • 13a Aoki K. Obata T. Yamazaki Y. Mori Y. Hirokawa H. Koseki J. Hattori T. Niitsu K. Takeda S. Aburada M. Miyamoto K. Chem. Pharm. Bull. 2007; 55: 255
    • 13b Aoki K. Koseki J. Takeda S. Aburada M. Miyamoto K. Chem. Pharm. Bull. 2007; 55: 922
    • 13c Han Y.-Y. Wu Z.-J. Zhang X.-M. Yuan W.-C. Tetrahedron Lett. 2010; 51: 2023
  • 14 Utepova IA. Trestsova MA. Chupakhin ON. Charushin VN. Rempel AA. Green Chem. 2015; 17: 4401
    • 15a Yotphan S. Beukeaw D. Reutrakul V. Synthesis 2013; 45: 936
    • 15b Buathongjan C. Beukeaw D. Yotphan S. Eur. J. Org. Chem. 2015; 1575
    • 15c Yotphan S. Sumunnee L. Beukeaw D. Buathongjan C. Reutrakul V. Org. Biomol. Chem. 2016; 14: 590
    • 15d Sumunnee L. Buathongjan C. Pimpasri C. Yotphan S. Eur. J. Org. Chem. 2017; 1025
  • 16 Beukeaw D. Udomsasporn K. Yotphan S. J. Org. Chem. 2015; 80: 3447

    • For selected examples of iodine-mediated/catalyzed indole functionalization, see:
    • 17a Bandgar BP. Shaikh KA. Tetrahedron Lett. 2003; 44: 1959
    • 17b Yadav JS. Reddy BV. S. Shubashree S. Sadashiv K. Tetrahedron Lett. 2004; 45: 2951
    • 17c Banik BK. Fernandez M. Alvarez C. Tetrahedron Lett. 2005; 46: 2479
    • 17d Wu W.-B. Huang J.-M. Org. Lett. 2012; 14: 5832
    • 17e Singh N. Singh KN. Synlett 2012; 23: 2116
    • 17f Ge W. Wei Y. Green Chem. 2012; 14: 2066
    • 17g Lin C. Hsu J. Sastry MN. V. Fang H. Tu Z. Liu J.-T. Ching-Fa Y. Tetrahedron 2005; 61: 11751
    • 17h Heiden D. Bozkus S. Klussmann M. Breugst M. J. Org. Chem. 2017; 82: 4037
  • 18 Gupta A. Deshmukh MS. Jain N. J. Org. Chem. 2017; 82: 4784
  • 19 Carrër A. Brion J.-D. Messaoudi S. Alami M. Org. Lett. 2013; 15: 5606
  • 20 See the Supporting Information for more details.
    • 22a Lamani M. Prabhu KR. J. Org. Chem. 2011; 76: 7938
    • 22b Gao Q. Liu S. Wu X. Zhang J. Wu A. J. Org. Chem. 2015; 80: 5984
    • 22c Zhang Z. Pi C. Tong H. Cui X. Wu Y. Org. Lett. 2017; 19: 440
    • 23a Jereb M. Vražič D. Org. Biomol. Chem. 2013; 11: 1978
    • 23b Huang H.-Y. Wu H.-R. Wei F. Wang D. Liu L. Org. Lett. 2015; 17: 3702
    • 23c Wu S.-X. Zhang Y.-K. Shi H.-W. Yan J. Chin. Chem. Lett. 2016; 27: 1519
    • 23d Liu X. Cui H. Yang D. Dai S. Zhang G. Wei W. Wang H. Catal. Lett. 2016; 146: 1743
    • 23e Wang Q.-D. Yang J.-M. Fang D. Ren J. Zeng B.-B. Tetrahedron Lett. 2017; 58: 2877