Synthesis 2018; 50(12): 2281-2306
DOI: 10.1055/s-0036-1591993
review
© Georg Thieme Verlag Stuttgart · New York

An Update of N-Tosylhydrazones: Versatile Reagents for Metal-Catalyzed and Metal-Free Coupling Reactions

Hui Wang
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. of China   Email: dengyuhua@yun.edu.cn   Email: zhihui_shao@hotmail.com
,
Yu-Hua Deng*
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. of China   Email: dengyuhua@yun.edu.cn   Email: zhihui_shao@hotmail.com
,
Zhihui Shao*
Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P. R. of China   Email: dengyuhua@yun.edu.cn   Email: zhihui_shao@hotmail.com
› Author Affiliations
We are grateful for the financial support from NSFC (21672184), the Program for Changjiang Scholars and Innovative Research Team in University (IRT13095), the Program for Innovative Research Team (in Science and Technology) in University of Yunnan Province, YunLing scholar of Yunnan Province, and Yunnan University.
Further Information

Publication History

Received: 04 February 2018

Accepted after revision: 06 March 2018

Publication Date:
23 May 2018 (online)


Abstract

N-Tosylhydrazones have had widespread application in organic synthesis for more than a half century. In most of cases, N-tosylhydrazones, as masked diazo compounds, have been generally used in a series of important carbon–carbon and carbon–heteroatom bond-forming reactions. This review provides an update on progress in diverse coupling reactions of N-tosylhydrazones since 2012. The examples selected are mainly categorized by metal-catalyzed and metal-free systems, wherein four main types of transformations including insertion, olefination, alkynylation, and cyclization are discussed for each system.

1 Introduction

2 Transition-Metal-Catalyzed Coupling Reactions

3 Metal-Free Coupling Reactions

4 Conclusion and Outlook

 
  • References

  • 1 For a review on the use of N-tosylhydrazone salts as a safe alternative for diazo compounds, see: Fulton JR. Aggarwal VK. de Vicente J. Eur. J. Org. Chem. 2005; 1479

    • For reviews on the use of N-tosylhydrazones and diazo compounds in transition-metal-catalyzed coupling reaction involving metal–carbene formation, see:
    • 2a Xiao Q. Zhang Y. Wang J. Acc. Chem. Res. 2013; 46: 236
    • 2b Liu Z. Wang J. J. Org. Chem. 2013; 78: 10024
    • 2c Xia Y. Zhang Y. Wang J. ACS Catal. 2013; 3: 2586
    • 2d Jia M. Ma S. Angew. Chem. Int. Ed. 2016; 55: 9134
    • 2e Xia Y. Qiu D. Wang J. Chem. Rev. 2017; 117: 13810
    • 3a Bamford WR. Stevens TS. J. Chem. Soc. 1952; 4735
    • 3b Shapiro RH. Heath MJ. J. Am. Chem. Soc. 1967; 89: 5734

      For previous reviews on the transition-metal-catalyzed and metal-free coupling reactions of N-tosylhydrazones, see:
    • 4a Barluenga J. Valdés C. Angew. Chem. Int. Ed. 2011; 50: 7486
    • 4b Shao Z. Zhang H. Chem. Soc. Rev. 2012; 41: 560

      For reviews on the synthesis of (hetero)cyclic compounds via N-tosylhydrazones, see:
    • 5a Belskaya NP. Bakulev VA. Russ. Chem. Rev. 2015; 84: 1226
    • 5b Xia Y. Wang J. Chem. Soc. Rev. 2017; 46: 2306
    • 5c Valdés C. Barroso R. Cabal MP. Synthesis 2017; 49: 4434

      For selected previous examples on Pd-catalyzed coupling reaction of N-tosylhydrazones, see:
    • 6a Barluenga J. Moriel P. Valdés C. Aznar F. Angew. Chem. Int. Ed. 2007; 46: 5587
    • 6b Chen Z.-S. Duan X.-H. Wu L.-Y. Ali S. Ji K.-G. Zhou P.-X. Liu X.-Y. Liang Y.-M. Chem. Eur. J. 2011; 17: 6918
    • 6c Ping W.-W. Jin L. Wu Y. Xue X.-Y. Zhan X. Tetrahedron 2014; 70: 9373

      For previous review and recent examples on the synthesis of alkenes from N-tosylhydrazones:
    • 7a Zhang Y. Wang J. Top. Curr. Chem. 2012; 32: 239
    • 7b Rasolofonjatovo E. Tréguier B. Provot O. Hamze A. Brion J.-D. Alami M. Eur. J. Org. Chem. 2012; 1603
    • 7c Ojha DP. Prabhu KR. J. Org. Chem. 2012; 77: 11027
    • 7d Jiménez-Aquino A. Vega JA. Trabanco AA. Valdés C. Adv. Synth. Catal. 2014; 356: 1079
    • 7e Wang X. Xu Y. Deng Y. Zhou Y. Feng J. Ji G. Zhang Y. Wang J. Chem. Eur. J. 2014; 20: 961
    • 7f Zhou Y. Ye F. Wang X. Xu S. Zhang Y. Wang J. J. Org. Chem. 2015; 80: 6109
    • 7g Campos VR. Gomes AT. P. C. Cunha AC. Neves M. daG. P. M. S. Ferreira VF. Cavaleiro JA. A. Beilstein J. Org. Chem. 2017; 13: 195
    • 7h Liu Y. Liu P. Liu Y. Wei Y. Chin. J. Chem. 2017; 35: 1141
    • 8a Barluenga J. Tomás-Gamasa M. Aznar F. Valdés C. Adv. Synth. Catal. 2010; 352: 3235
    • 8b Paraja M. Barroso R. Cabal MP. Valdés C. Adv. Synth. Catal. 2017; 359: 1058
    • 9a Zhou L. Ye F. Zhang Y. Wang J. Org. Lett. 2012; 14: 922
    • 9b Yang Q. Chai H. Liu T. Yu Z. Tetrahedron Lett. 2013; 54: 6485
    • 9c Xie Y. Zhang P. Zhou L. J. Org. Chem. 2016; 81: 2128
  • 10 Florentino L. Aznar F. Valdés C. Chem. Eur. J. 2013; 19: 10506
  • 11 Ganapathy D. Sekar G. Org. Lett. 2014; 16: 3856
    • 12a Roche M. Hamze A. Brion J.-D. Alami M. Org. Lett. 2013; 15: 148
    • 12b Lawson M. Hamze A. Peyrat J.-F. Bignon J. Dubois J. Brion J.-D. Alami M. Org. Biomol. Chem. 2013; 11: 3664
    • 12c Roche M. Salim SM. Bignon J. Levaique H. Brion J.-D. Alami M. Hamze A. J. Org. Chem. 2015; 80: 6715
    • 12d Naret T. Retailleau P. Bignon J. Brion J.-D. Alami M. Hamze A. Adv. Synth. Catal. 2016; 358: 1833
    • 12e Tréguier B. Lawson M. Bernadat G. Bignon J. Dubois J. Brion J.-D. Alami M. Hamze A. ACS Comb. Sci. 2014; 16: 702
    • 12f Renko D. Provot O. Rasolofonjatovo E. Bignon J. Rodrigo J. Dubois J. Brion J.-D. Hamze A. Alami M. Eur. J. Med. Chem. 2015; 90: 834
    • 12g Khelifi I. Naret T. Renko D. Hamze A. Bernadat G. Bignon J. Lenoir C. Dubois J. Brion J.-D. Provot O. Alami M. Eur. J. Med. Chem. 2017; 127: 1025
    • 12h Naret T. Bzeih T. Retailleau P. Alami M. Hamze A. Adv. Synth. Catal. 2018; 360: 584
    • 13a Bzeih T. Naret T. Hachem A. Jaber N. Khalaf A. Bignon J. Brion J.-D. Alami M. Hamze A. Chem. Commun. 2016; 52: 13027
    • 13b Bzeih T. Lamaa D. Frison G. Hachem A. Jaber N. Bignon J. Retailleau P. Alami M. Hamze A. Org. Lett. 2017; 19: 6700
    • 14a Feng J. Li B. He Y. Gu Z. Angew. Chem. Int. Ed. 2016; 55: 2186
    • 14b Wu H. Han ZS. Qu B. Wang D. Zhang Y. Xu Y. Grinberg N. Lee H. Song JJ. Roschangar F. Wang G. Senanayake CH. Adv. Synth. Catal. 2017; 359: 3927
  • 15 Patel PK. Dalvadi JP. Chikhalia KH. RSC Adv. 2014; 4: 55354
  • 16 Patel PK. Dalvadi JP. Chikhalia KH. Tetrahedron Lett. 2015; 56: 6585
  • 17 Luo H. Wu G. Xu S. Wang K. Wu C. Zhang Y. Wang J. Chem. Commun. 2015; 51: 13321
    • 18a Zhao X. Jing J. Lu K. Zhang Y. Wang J. Chem. Commun. 2010; 46: 1724
    • 18b Zhou L. Ye F. Ma J. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2011; 50: 3510
  • 19 Chen H. Huang L. Fu W. Liu X. Jiang H. Chem. Eur. J. 2012; 18: 10497
  • 20 Jiang H. He L. Li X. Chen H. Wu W. Fu W. Chem. Commun. 2013; 49: 9218
    • 21a Zeng X. Cheng G. Shen J. Cui X. Org. Lett. 2013; 15: 3022
    • 21b Roche M. Frison G. Brion J.-D. Provot O. Hamze A. Alami M. J. Org. Chem. 2013; 78: 8485
    • 21c Roche M. Bignon J. Brion J.-D. Hamze A. Alami M. J. Org. Chem. 2014; 79: 7583
    • 21d Lingayya R. Vellakkaran M. Nagaiah K. Tadikamalla PR. Nanubolu JB. Chem. Commun. 2017; 53: 1672
  • 22 Wu G. Deng Y. Luo H. Li T. Zhang Y. Wang J. Asian J. Org. Chem. 2016; 5: 874
    • 23a Xia Y. Hu F. Liu Z. Qu P. Ge R. Ma C. Zhang Y. Wang J. Org. Lett. 2013; 15: 1784
    • 23b Xia Y. Hu F. Xia Y. Liu Z. Ye F. Zhang Y. Wang J. Synthesis 2017; 49: 1073
    • 24a Jiang H. Fu W. Chen H. Chem. Eur. J. 2012; 18: 11884
    • 24b Ni M. Zhang J. Liang X. Jiang Y. Loh T.-P. Chem. Commun. 2017; 53: 12286
  • 25 Zhu C. Zhu R. Chen P. Chen F. Wu W. Jiang H. Adv. Synth. Catal. 2017; 359: 3154
    • 26a Zhang J.-L. Chan PW. H. Che C.-M. Tetrahedron Lett. 2003; 44: 8733
    • 26b de Meijere A. Schulz T.-J. Kostikov RR. Graupner F. Murr T. Bielfeldt T. Synthesis 1991; 547
    • 27a Yuan C. Du B. Yang L. Liu B. J. Am. Chem. Soc. 2013; 135: 9291
    • 27b Du B. Yuan C. Yu T. Yang L. Yang Y. Liu B. Qin S. Chem. Eur. J. 2014; 20: 2613
    • 27c Yang Y. Li J. Du B. Yuan C. Liu B. Qin S. Chem. Commun. 2015; 51: 6179
  • 28 Chen P. Zhu C. Zhu R. Lin Z. Wu W. Jiang H. Org. Biomol. Chem. 2017; 15: 1228
    • 29a Liu Z. Tan H. Fu T. Xia Y. Qiu D. Zhang Y. Wang J. J. Am. Chem. Soc. 2015; 137: 12800
    • 29b Arunprasath D. Sekar G. Adv. Synth. Catal. 2017; 359: 698
  • 30 Zhu C. Chen P. Zhu R. Lin Z. Wu W. Jiang H. Chem. Commun. 2017; 53: 2697
  • 31 For a review on the tandem reaction initiated by hydrazones, see: Chen P.-A. May JA. Asian J. Org. Chem. 2016; 5: 1296
    • 32a Khanna A. Maung C. Johnson KR. Luong TT. Van Vranken DL. Org. Lett. 2012; 14: 3233
    • 32b Zhou P.-X. Luo J.-Y. Zhao L.-B. Ye Y.-Y. Liang Y.-M. Chem. Commun. 2013; 49: 3254
    • 33a Zhou P.-X. Ye Y.-Y. Liang Y.-M. Org. Lett. 2013; 15: 5080
    • 33b Ye Y.-Y. Zhou P.-X. Luo J.-Y. Zhong M.-J. Liang Y.-M. Chem. Commun. 2013; 49: 10190
  • 34 Zhou P.-X. Ye Y.-Y. Zhao L.-B. Hou J.-Y. Kang X. Chen D.-Q. Tang Q. Zhang J.-Y. Huang Q.-X. Zheng L. Ma J.-W. Xu P.-F. Liang Y.-M. Chem. Eur. J. 2014; 20: 16093
  • 35 Yin B. Zhang X. Liu J. Li X. Jiang H. Chem. Commun. 2014; 50: 8113
  • 36 Yin B. Zhang X. Zhang X. Peng H. Zhou W. Liu B. Jiang H. Chem. Commun. 2015; 51: 6126
    • 37a Xia Y. Xia Y. Zhang Y. Wang J. Org. Biomol. Chem. 2014; 12: 9333
    • 37b Shang XS. Li NT. Siyang HX. Liu PN. J. Org. Chem. 2015; 80: 4808
    • 37c Shang XS. Li NT. Li DY. Liu PN. Adv. Synth. Catal. 2016; 358: 1577
  • 38 Dai Q. Jiang Y. Guo S. Yu J.-T. Cheng J. Chem. Commun. 2015; 51: 14781
    • 39a Dai Q. Jiang Y. Yu J.-T. Cheng J. Chem. Commun. 2015; 51: 16645
    • 39b Chu H. Dai Q. Jiang Y. Cheng J. J. Org. Chem. 2017; 82: 8267
    • 39c Peng J. Gao Y. Zhu C. Liu B. Gao Y. Hu M. Wu W. Jiang H. J. Org. Chem. 2017; 82: 3581
  • 40 Sun S. Hu W.-M. Gu N. Cheng J. Chem. Eur. J. 2016; 22: 18729
  • 41 Xiao Q. Wang B. Tian L. Yang Y. Ma J. Zhang Y. Chen S. Wang J. Angew. Chem. Int. Ed. 2013; 52: 9305
  • 42 Mao M. Zhang L. Chen Y.-Z. Zhu J. Wu L. ACS Catal. 2017; 7: 181
  • 43 Zhu J. Mao M. Ji H.-J. Xu J.-Y. Wu L. Org. Lett. 2017; 19: 1946
  • 44 Huang Z. Yang Y. Xiao Q. Zhang Y. Wang J. Eur. J. Org. Chem. 2012; 6586
    • 45a Barroso R. Valencia RA. Cabal M.-P. Valdés C. Org. Lett. 2014; 16: 2264
    • 45b Barroso R. Cabal M.-P. Badía-Lainño R. Valdés C. Chem. Eur. J. 2015; 21: 16463
  • 46 Paraja M. Valdés C. Org. Lett. 2017; 19: 2034
    • 47a Ngo TN. Dang TT. Villinger A. Langer P. Adv. Synth. Catal. 2016; 358: 1328
    • 47b Barroso R. Paraja M. Cabal M.-P. Valdés C. Org. Lett. 2017; 19: 4086
    • 48a Liu X. Ma X. Huang Y. Gu Z. Org. Lett. 2013; 15: 4814
    • 48b Liu X. Gu Z. Org. Chem. Front. 2015; 2: 778
  • 49 Zhou L. Shi Y. Xiao Q. Liu Y. Ye F. Zhang Y. Wang J. Org. Lett. 2011; 13: 968
  • 50 Liu Z. Xia Y. Zhou S. Wang L. Zhang Y. Wang J. Org. Lett. 2013; 15: 5032
    • 51a Gao Y. Xiong W. Chen H. Wu W. Peng J. Gao Y. Jiang H. J. Org. Chem. 2015; 80: 7456
    • 51b Aziz J. Biron J.-D. Alami M. Hamze A. RSC Adv. 2015; 5: 74391
    • 52a Arunprasath D. Muthupandi P. Sekar G. Org. Lett. 2015; 17: 5448
    • 52b Arunprasath D. Bala BD. Sekar G. Org. Lett. 2017; 19: 5280
    • 53a Paraja M. Pérez-Aguilar MC. Valdés C. Chem. Commun. 2015; 51: 16241
    • 53b Paraja M. Valdés C. Chem. Commun. 2016; 52: 6312
    • 54a Wu X.-X. Zhou P.-X. Wang L.-J. Xu P.-F. Liang Y.-M. Chem. Commun. 2014; 50: 3882
    • 54b Zhou P.-X. Zheng L. Ma J.-W. Ye Y.-Y. Liu X.-Y. Xu P.-F. Liang Y.-M. Chem. Eur. J. 2014; 20: 6745
  • 55 Zhou P.-X. Ye Y.-Y. Ma J.-W. Zheng L. Tang Q. Qiu Y.-F. Song B. Qiu Z.-H. Xu P.-F. Liang Y.-M. J. Org. Chem. 2014; 79: 6627
  • 56 Hu F. Xia Y. Liu Z. Ma C. Zhang Y. Wang J. Org. Biomol. Chem. 2014; 12: 3590
    • 57a Wu X.-X. Shen Y. Chen W.-L. Chen S. Hao X.-H. Xia Y. Xu P.-F. Liang Y.-M. Chem. Commun. 2015; 51: 8031
    • 57b Zhu C. Chen P. Zhu R. Jiang G. Lin Z. Wu W. Jiang H. Chem. Asian J. 2017; 12: 2991
  • 58 For a review on copper-catalyzed X–H insertion of N-tosylhydrazones, see: Jadhav AP. Ray D. Rao VU. B. Singh RP. Eur. J. Org. Chem. 2016; 2369
    • 59a Zhao X. Wu G. Zhang Y. Wang J. J. Am. Chem. Soc. 2011; 133: 3296
    • 59b Salvanna N. Reddy GC. Rao BR. Das B. RSC Adv. 2013; 3: 20538
  • 60 Teng Q. Hu J. Ling L. Sun R. Dong J. Chen S. Zhang H. Org. Biomol. Chem. 2014; 12: 7721
  • 61 Yao T. Hirano K. Satoh T. Miura M. Angew. Chem. Int. Ed. 2012; 51: 775
    • 62a Jha AK. Jain N. Chem. Commun. 2016; 52: 1831
    • 62b Xiao Q. Ling L. Ye F. Tan R. Tian L. Zhang Y. Li Y. Wang J. J. Org. Chem. 2013; 78: 3879
    • 62c Xu S. Wu G. Ye F. Wang X. Li H. Zhao X. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2015; 54: 4669
    • 63a Xu K. Shen C. Sheng W. Shan S. Jia Y. Chin. J. Org. Chem. 2015; 35: 633
    • 63b Huang Y. Li X. Yu Y. Zhu C. Wu W. Jiang H. J. Org. Chem. 2016; 81: 5014
    • 64a Cuevas-Yañez E. Serrano JM. Huerta G. Muchowski JM. Cruz-Almanza R. Tetrahedron 2004; 60: 9391
    • 64b Ling L. Cao J. Hu J. Zhang H. RSC Adv. 2017; 7: 27974
  • 65 Aziz J. Frison G. Gómez M. Brion J.-D. Hamze A. Alami M. ACS Catal. 2014; 4: 4498
    • 66a Aziz J. Brion J.-D. Hamze A. Alami M. Adv. Synth. Catal. 2013; 355: 2417
    • 66b Pilania M. Velladurai A. Tantak MP. Kumar D. ChemistrySelect 2016; 1: 6368
    • 66c Hamze A. Tréguier B. Brion J.-D. Alami M. Org. Biomol. Chem. 2011; 9: 6200
    • 67a Xu P. Han F.-S. Wang Y.-H. Adv. Synth. Catal. 2015; 357: 3441
    • 67b Xu P. Qi F.-L. Han F.-S. Wang Y.-H. Chem. Asian J. 2016; 11: 2030
    • 68a Miao W. Gao Y. Li X. Gao Y. Tang G. Zhao Y. Adv. Synth. Catal. 2012; 354: 2659
    • 68b Wu L. Zhang X. Chen Q.-Q. Zhou A.-K. Org. Biomol. Chem. 2012; 10: 7859
    • 68c Chen Z.-S. Zhou Z.-Z. Hua H.-L. Duan X.-H. Luo J.-Y. Wang J. Zhou P.-X. Liang Y.-M. Tetrahedron 2013; 69: 1065
    • 68d Ling L. Hu J. Huo Y. Zhang H. Tetrahedron 2017; 73: 86
    • 69a Huang Y. Li X. Wang X. Yu Y. Zheng J. Wu W. Jiang H. Chem. Sci. 2017; 8: 7047
    • 69b Huang Y. Yu Y. Zhu Z. Zhu C. Cen J. Li X. Wu W. Jiang H. J. Org. Chem. 2017; 82: 7621
  • 70 Sha Q. Ling Y. Wang W. Wei Y. Adv. Synth. Catal. 2013; 355: 2145
  • 71 Sha Q. Wei Y. ChemCatChem 2014; 6: 131
  • 72 Sha Q. Wei Y. Synthesis 2014; 46: 2353
    • 73a Mao S. Gao Y.-R. Zhu X.-Q. Guo D.-D. Wang Y.-Q. Org. Lett. 2015; 17: 1692
    • 73b Xu S. Gao Y. Chen R. Wang K. Zhang Y. Wang J. Chem. Commun. 2016; 52: 4478
  • 74 Li X. Liu X. Chen H. Wu W. Qi C. Jiang H. Angew. Chem. Int. Ed. 2014; 53: 14485
  • 75 Ye F. Ma XS. Xiao Q. Li H. Zhang Y. Wang J. J. Am. Chem. Soc. 2012; 134: 5742
  • 76 Zhang Z. Zhou Q. Yu W. Li T. Wu G. Zhang Y. Wang J. Org. Lett. 2015; 17: 2474
  • 77 Zhang Z. Yu W. Zhou Q. Li T. Zhang Y. Wang J. Chin. J. Chem. 2016; 34: 473
  • 78 For a very recent review on the catalytic asymmetric synthesis of allenes, see: Chu W.-D. Zhang Y. Wang J. Catal. Sci. Technol. 2017; 7: 4570
    • 79a Xiao Q. Xia Y. Li H. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2011; 50: 1114
    • 79b Hossain ML. Ye F. Zhang Y. Wang J. J. Org. Chem. 2013; 78: 1236
    • 79c Ye F. Wang C. Ma X. Hossain ML. Xia Y. Zhang Y. Wang J. J. Org. Chem. 2015; 80: 647
  • 80 Ye F. Hossain ML. Xu Y. Ma X. Xiao Q. Zhang Y. Wang J. Chem. Asian J. 2013; 8: 1404
  • 81 Ye F. Shi Y. Zhou L. Xiao Q. Zhang Y. Wang J. Org. Lett. 2011; 13: 5020
  • 82 Hossain ML. Ye F. Liu Z. Xia Y. Shi Y. Zhou L. Zhang Y. Wang J. J. Org. Chem. 2014; 79: 8689
  • 83 Xiao T. Dong X. Zhou L. Org. Biomol. Chem. 2013; 11: 1490
  • 84 Hossain ML. Wang K. Ye F. Zhang Y. Wang J. Chin. J. Catal. 2017; 38: 115
  • 85 Siyang HX. Wu XR. Ji XY. Wu XY. Liu PN. Chem. Commun. 2014; 50: 8514
    • 86a Su N. Theorell JA. Wink DJ. Driver TG. Angew. Chem. Int. Ed. 2015; 54: 12942
    • 86b Su N. Deng T. Wink DJ. Driver TG. Org. Lett. 2017; 19: 3990
  • 87 Huang F. Liu Z. Wang Q. Lou J. Yu Z. Org. Lett. 2017; 19: 3660
  • 88 Song Q. Mai S. Angew. Chem. Int. Ed. 2017; 56: 7952
  • 89 Sakai K. Hida N. Kondo K. Bull. Chem. Soc. Jpn. 1986; 59: 179
  • 90 van Berkel SS. Brauch S. Gabriel L. Henze M. Stark S. Vasilev D. Wessjohann LA. Abbas M. Westermann B. Angew. Chem. Int. Ed. 2012; 51: 5343
  • 91 Chen Z. Yan Q. Liu Z. Xu Y. Zhang Y. Angew. Chem. Int. Ed. 2013; 52: 13324
  • 92 Chen Z. Yan Q. Yi H. Liu Z. Lei A. Zhang Y. Chem. Eur. J. 2014; 20: 13692
    • 93a Zhang Z. Zhou Q. Ye F. Xia Y. Wu G. Hossain ML. Zhang Y. Wang J. Adv. Synth. Catal. 2015; 357: 2277
    • 93b Zhang Z. Zhou Q. Yu W. Li T. Zhang Y. Wang J. Chin. J. Chem. 2017; 35: 387
  • 94 Zheng Z. Shi L. Tetrahedron Lett. 2016; 57: 5132
    • 95a Wang Q. He L. Li KK. Tsui GC. Org. Lett. 2017; 19: 658
    • 95b Zhang B.-H. Lei L.-S. Liu S.-Z. Mou X.-Q. Liu W.-T. Wang S.-H. Wang J. Bao W. Zhang K. Chem. Commun. 2017; 53: 8545
  • 96 Zhou Z. Liu Y. Chen J. Yao E. Cheng J. Org. Lett. 2016; 18: 5268
  • 97 Li Y. Huang Z. Wu X. Xu P.-F. Jin J. Zhang Y. Wang J. Tetrahedron 2012; 68: 5234
  • 98 Lingayya R. Vellakkaran M. Nagaiah K. Nanubolu JB. Adv. Synth. Catal. 2016; 358: 81
  • 99 Rao KP. Basak AK. Raju A. Patil VS. Reddy LK. Tetrahedron Lett. 2013; 54: 5510
  • 100 Patil VS. Pal SS. Pathare RS. Reddy LK. K. Pathak A. Tetrahedron Lett. 2015; 56: 6370
  • 102 Reddy AR. Zhou C.-Y. Guo Z. Wei J. Che C.-M. Angew. Chem. Int. Ed. 2014; 53: 14175

    • For recent reviews and selected examples on the photocatalytic annulation of hydrazones, see:
    • 103a Kärkäs MD. ACS Catal. 2017; 7: 4999
    • 103b Chen J.-R. Hu X.-Q. Lu L.-Q. Xiao W.-J. Acc. Chem. Res. 2016; 49: 1911
    • 103c Zhao Q.-Q. Chen J. Yan D.-M. Chen J.-R. Xiao W.-J. Org. Lett. 2017; 19: 3620
    • 103d Hu X.-Q. Qi X. Chen J.-R. Zhao Q.-Q. Wei Q. Lan Y. Xiao W.-J. Nat. Commun. 2016; 7: 11188
    • 103e Zhao Q.-Q. Hu X.-Q. Yang M.-N. Chen J.-R. Xiao W.-J. Chem. Commun. 2016; 52: 12749
    • 103f Hu X.-Q. Chen J.-R. Wen Q. Liu F.-L. Deng Q.-H. Beauchemin AM. Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 12163
    • 104a Xia Y. Liu Z. Xiao Q. Qu P. Ge R. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2012; 51: 5714
    • 104b Zhu CH. Qiu L. Xu GY. Li J. Sun JT. Chem. Eur. J. 2015; 21: 12871
  • 105 Yada A. Fujita S. Murakami M. J. Am. Chem. Soc. 2014; 136: 7217
  • 106 Torres Ò. Roglans A. Pla-Quintana A. Adv. Synth. Catal. 2016; 358: 3512
    • 107a Le PQ. May JA. J. Am. Chem. Soc. 2015; 137: 12219
    • 107b Chen P.-A. Setthakarn K. May JA. ACS Catal. 2017; 7: 6155
    • 108a Paul ND. Chirila A. Lu H. Zhang XP. de Bruin B. Chem. Eur. J. 2013; 19: 12953
    • 108b Pau ND. Mandal S. Otte M. Cui X. Zhang XP. de Bruin B. J. Am. Chem. Soc. 2014; 136: 1090
    • 108c Das BG. Chirila A. Tromp M. Reek JN. H. de Bruin B. J. Am. Chem. Soc. 2016; 138: 8968
    • 108d Karns AS. Goswami M. de Bruin B. Chem. Eur. J. 2018; 24: 5253
    • 109a Zhou Q. Li S. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2017; 56: 16013
    • 109b Chao D. Liu T.-X. Ma N. Zhang P. Fu Z. Ma J. Liu Q. Zhang F. Zhang Z. Zhang G. Chem. Commun. 2016; 52: 982
    • 110a Reddy AR. Hao F. Wu K. Zhou C.-Y. Che C.-M. Angew. Chem. Int. Ed. 2016; 55: 1810
    • 110b Wang H. Zhou C.-Y. Che C.-M. Adv. Synth. Catal. 2017; 359: 2253
  • 111 Wang Y. Wen X. Cui X. Wojtas L. Zhang XP. J. Am. Chem. Soc. 2017; 139: 1049
  • 112 Guo P. Huang S. Mo J. Chen X. Jiang H. Chen W. Cai H. Zhan H. Catal. Commun. 2017; 90: 43
  • 113 For a short review on the metal-free reaction of diazo compounds with organoboron compounds, see: Li H. Zhang Y. Wang J. Synthesis 2013; 45: 3090

    • For C–O bond formation by esterification of hydrazones with carboxylic acids, see:
    • 114a Furrow ME. Myers AG. J. Am. Chem. Soc. 2004; 126: 12222
    • 114b Zhou A. Wu L. Li D. Chen Q. Zhang X. Xia W. Chin. J. Chem. 2012; 30: 1862
    • 114c García-Muñoz A.-H. Tomás-Gamasa M. Pérez-Aguilar MC. Cuevas-Yañez E. Valdés C. Eur. J. Org. Chem. 2012; 3925
    • 114d Perusquía-Hernández C. Lara-Issasi GR. Frontana-Uribe BA. Cuevas-Yañez E. Tetrahedron Lett. 2013; 54: 3302
    • 114e Kaszás T. Tóth M. Kun S. Somsák L. RSC Adv. 2017; 7: 10454
  • 115 For C–O bond formation by etherification of hydrazones with alcohols or phenols, see: Barluenga J. Tomás-Gamasa M. Aznar F. Valdés C. Angew. Chem. Int. Ed. 2010; 49: 4993
  • 116 For C–N bond formation via amination of hydrazones, see: Yadav AK. Yadav LD. S. RSC Adv. 2014; 4: 34764

    • For C–S bond formation from N-tosylhydrazones, see:
    • 117a Lin Y. Luo P. Zheng Q. Liu Y. Sang X. Ding Q. RSC Adv. 2014; 4: 16855
    • 117b Ding Q. Cao B. Yuan J. Liu X. Peng Y. Org. Biomol. Chem. 2011; 9: 748
    • 117c Li L.-L. Gao L.-X. Han F.-S. RSC Adv. 2015; 5: 29996
    • 117d Teng Q. Liu Y. Hu J. Chai H. Li K. Zhang H. Tetrahedron 2016; 72: 3890
    • 117e Garcia-Carrillo MA. Guzmán Á. Díaz E. Tetrahedron Lett. 2017; 58: 1952
    • 117f Kaszás T. Tóth M. Somsák L. New J. Chem. 2017; 41: 13871
  • 118 For the azidation reaction of N-tosylhydrazones, see: Barluenga J. Tomás-Gamasa M. Valdés C. Angew. Chem. Int. Ed. 2012; 51: 5950

    • For examples on the C–X bond formation via halogenation of N-tosylhydrazones, see:
    • 119a Yadav AK. Srivastava VP. Yadav LD. S. Chem. Commun. 2013; 49: 2154
    • 119b Murphy GK. Abbas FZ. Poulton AV. Adv. Synth. Catal. 2014; 356: 2919
    • 119c Hepples C. Murphy GK. Tetrahedron Lett. 2015; 56: 4971
  • 120 Sha Q. Wei Y.-Y. Org. Biomol. Chem. 2013; 11: 5615
    • 121a Xiong W. Qi C. He H. Ouyang L. Zhang M. Jiang H. Angew. Chem. Int. Ed. 2015; 54: 3084
    • 121b Hong JY. Seo UR. Chung YK. Org. Chem. Front. 2016; 3: 764
    • 121c Sun S. Yu J.-T. Jiang Y. Cheng J. J. Org. Chem. 2015; 80: 2855
  • 122 Tsai AS. Curto JM. Rocke BN. Dechert-Schmitt A.-MR. Ingle GK. Mascitti V. Org. Lett. 2016; 18: 508
  • 123 Wen J. Yang C.-T. Jiang T. Hu S. Yang T.-Z. Wang X.-L. Org. Lett. 2014; 16: 2398
    • 124a Liu J.-B. Yan H. Lu G. Tetrahedron Lett. 2013; 54: 891
    • 124b Sha Q. Wei Y. Tetrahedron 2013; 69: 3829
    • 124c Luo Z.-G. Liu P. Fang Y.-Y. Xu X.-M. Feng C.-T. Li Z. Zhang X.-M. He J. Res. Chem. Intermed. 2017; 43: 1139
  • 125 Xia Y. Qu P. Liu Z. Ge R. Xiao Q. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2013; 52: 2543
    • 126a Angle SR. Neitzel ML. J. Org. Chem. 2000; 65: 6458
    • 126b Aggarwal VK. de Vicente J. Pelotier B. Holmes IP. Bonnert RV. Tetrahedron Lett. 2000; 41: 10327
    • 126c Allwood DM. Blakemore DC. Ley SV. Org. Lett. 2014; 16: 3064
  • 127 Hu F. Yang J. Xia Y. Ma C. Xia H. Zhang Y. Wang J. Org. Chem. Front. 2015; 2: 1450
    • 128a Li H. Wang L. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2012; 51: 2943
    • 128b Li H. Shangguan X. Zhang Z. Huang S. Zhang Y. Wang J. Org. Lett. 2014; 16: 448
    • 128c Qiu D. Wang S. Meng H. Tang S. Zhang Y. Wang J. J. Org. Chem. 2017; 82: 624
    • 129a Barluenga J. Tomás-Gamasa M. Aznar F. Valdés C. Nat. Chem. 2009; 1: 494
    • 129b Pérez-Aguilar MC. Valdés C. Angew. Chem. Int. Ed. 2012; 51: 5953
    • 130a Kupracz L. Kirschning A. J. Flow Chem. 2012; 3: 11
    • 130b Li X. Feng Y. Lin L. Zou G. J. Org. Chem. 2012; 77: 10991
    • 130c Shen X. Gu N. Liu P. Ma X. Xie J. Liu Y. He L. Dai B. RSC Adv. 2015; 5: 63726
  • 131 Shen X. Liu P. Liu Y. Liu Y. Dai B. Tetrahedron 2017; 73: 785
  • 132 Wu G. Deng Y. Luo H. Zhou J. Li T. Zhang Y. Wang J. Chem. Commun. 2016; 52: 5266
    • 133a Plaza M. Pérez-Aguilar MC. Valdés C. Chem. Eur. J. 2016; 22: 6253
    • 133b Plaza M. Valdés C. J. Am. Chem. Soc. 2016; 138: 12061
    • 134a Mundal DA. Lutz KE. Thomson RJ. J. Am. Chem. Soc. 2012; 134: 5782
    • 134b Diagne AB. Li S. Perkowski GA. Mrksich M. Thomson RJ. ACS Comb. Sci. 2015; 17: 658
    • 134c Jiang Y. Diagne AB. Thomson RJ. Schaus SE. J. Am. Chem. Soc. 2017; 139: 1998
    • 135a Kerr WJ. Morrison AJ. Pazicky M. Weber T. Org. Lett. 2012; 14: 2250 ; and references therein
    • 135b On the mechanism of the Shapiro reaction, understanding the regioselectivity, see: Funes-Ardoiz I. Losantos R. Sampedro D. RSC Adv. 2015; 5: 37292
  • 136 Ojha DP. Prabhu KR. Org. Lett. 2015; 17: 18
  • 137 Shrestha ML. Qi W. McIntosh MC. J. Org. Chem. 2017; 82: 8359
  • 138 Ji F. Peng H. Zhang X. Lu W. Liu S. Jiang H. Liu B. Yin B. J. Org. Chem. 2015; 80: 2092
  • 139 Barluenga J. Quiñones N. Tomás-Gamasa M. Cabal M.-P. Eur. J. Org. Chem. 2012; 2312

    • For recent examples on the cyclopropanation reaction of N-tosylhydrazones toward functional fullerene derivatives, see:
    • 140a Syrgiannis Z. Hadad C. Prato M. Eur. J. Org. Chem. 2014; 4225
    • 140b Lin G. Cui R. Huang H. Guo X. Yang S. Li C. Dong J. Sun B. Tetrahedron 2015; 71: 7998
    • 140c Iwai T. Matsumoto F. Hida K. Moriwaki K. Takao Y. Ito T. Mizuno T. Ohno T. Synlett 2015; 26: 960
    • 140d Hadad C. Syrgiannis Z. Bonasera A. Prato M. Eur. J. Org. Chem. 2015; 1423
    • 140e Kim HU. Park JB. Hwang D.-H. J. Nanosci. Nanotechnol. 2016; 16: 5017
    • 140f Naqvi S. Gupta N. Kumari N. Jewariya M. Kumar P. Kumar R. Chand S. RSC Adv. 2016; 6: 24889
    • 141a Lawson M. Bignon J. Brion J.-D. Hamze A. Alami M. Asian J. Org. Chem. 2015; 4: 1144
    • 141b Zhu C. Li J. Chen P. Wu W. Ren Y. Jiang H. Org. Lett. 2016; 18: 1470
    • 141c Wu W. Lin Z. Zhu C. Chen P. Li J. Jiang H. J. Org. Chem. 2017; 82: 12746
  • 142 Barroso R. Jiménez A. Pérez-Aguilar MC. Cabal M.-P. Valdés C. Chem. Commun. 2016; 52: 3677
  • 143 Zhu C. Chen P. Wu W. Qi C. Ren Y. Jiang H. Org. Lett. 2016; 18: 4008
  • 144 Liu Z. Tan H. Wang L. Fu T. Xia Y. Zhang Y. Wang J. Angew. Chem. Int. Ed. 2015; 54: 3056
  • 145 Zhang Z. Feng J. Xu Y. Zhang S. Ye Y. Li T. Wang X. Chen J. Zhang Y. Wang J. Synlett 2015; 26: 59
  • 146 Xia A.-J. Kang T.-R. He L. Chen L.-M. Li W.-T. Yang J.-L. Liu Q.-Z. Angew. Chem. Int. Ed. 2016; 55: 1441
  • 147 Choudhary D. Agrawal C. Khatri V. Thakuria R. Basak AK. Tetrahedron Lett. 2017; 58: 1132
  • 148 Liu P. Xu G. Sun J. Org. Lett. 2017; 19: 1858

    • For examples on the construction of indazoles via intermolecular metal-free annulation of N-tosylhydrazones, see:
    • 149a Li P. Wu C. Zhao J. Rogness DC. Shi F. J. Org. Chem. 2012; 77: 3149
    • 149b Liu Z. Wang L. Tan H. Zhou S. Fu T. Xia Y. Zhang Y. Wang J. Chem. Commun. 2014; 50: 5061

      For examples on the construction of indazoles via intramolecular metal-free catalyzed annulation of N-tosylhydrazones, see:
    • 150a Lominac WJ. D’Angelo ML. Smith MD. Ollison DA. Hanna JM. Jr. Tetrahedron Lett. 2012; 53: 906
    • 150b Thomé I. Besson C. Kleine T. Bolm C. Angew. Chem. Int. Ed. 2013; 52: 7509

      For examples on the construction of indazoles via transition-metal-catalyzed annulation of N-tosylhydrazones, see:
    • 151a Kylmälä T. Udd S. Tois J. Franzén R. Tetrahedron Lett. 2010; 51: 3613
    • 151b Tang M. Kong Y. Chu B. Feng D. Adv. Synth. Catal. 2016; 358: 926
    • 151c Inamoto K. Katsuno M. Yoshino T. Arai Y. Hiroya K. Sakamoto T. Tetrahedron 2007; 63: 2695
    • 151d Inamoto K. Katsuno M. Yoshino T. Suzuki I. Hiroya K. Sakamoto T. Chem. Lett. 2004; 33: 1026
    • 153a Barroso R. Jiménez A. Pérez-Aguilar MC. Valdés C. Angew. Chem. Int. Ed. 2013; 52: 7219
    • 153b Pérez-Aguilar MC. Valdés C. Angew. Chem. Int. Ed. 2015; 54: 13729
    • 153c Divya KV. L. Meena A. Suja TD. Synthesis 2016; 48: 4207
    • 153d Zheng Y. Zhang X. Yao R. Wen YC. Huang J. Xu X. J. Org. Chem. 2016; 81: 11072
    • 154a Yoshimatsu M. Ohta K. Takahashi N. Chem. Eur. J. 2012; 18: 15602
    • 154b Yu Y. Huang W. Chen Y. Gao B. Wu W. Jiang H. Green Chem. 2016; 18: 6445
  • 155 Sha Q. Wei Y. Synthesis 2013; 45: 413
    • 156a Yen Y.-P. Chen S.-F. Heng Z.-C. Huang J.-C. Kao L.-C. Lai C.-C. Liu RS. H. Heterocycles 2001; 55: 1859
    • 156b Merchant RR. Allwood DM. Blakemore DC. Ley SV. J. Org. Chem. 2014; 79: 8800
    • 156c Yu Y. Chen Y. Huang W. Wu W. Jiang H. J. Org. Chem. 2017; 82: 9479
    • 157a Tang M. Zhang W. Kong Y. Org. Biomol. Chem. 2013; 11: 6250
    • 157b Yang L.-L. Li X.-F. Hu X.-L. Yu X.-Y. Tetrahedron Lett. 2016; 57: 1265
  • 158 Wu Q.-X. Li H.-J. Wang H.-S. Zhang Z.-G. Wang C.-C. Wu Y.-C. Synlett 2015; 26: 243
  • 159 Fernández M. Uria U. Orbe L. Vicario JL. Reyes E. Carrillo L. J. Org. Chem. 2014; 79: 441
  • 160 Jiang S. Guo H.-M. Yao S. Shi D.-Q. Xiao W.-J. J. Org. Chem. 2017; 82: 10433
  • 161 Barroso R. Escribano M. Cabal M.-P. Valdés C. Eur. J. Org. Chem. 2014; 1672
    • 162a Tang M. Zhang F.-M. Tetrahedron 2013; 69: 1427
    • 162b Sha Q. Liu H. Wei Y. Eur. J. Org. Chem. 2014; 7707
    • 162c Wang Y. Han J. Chen J. Cao W. Tetrahedron 2015; 71: 8256
    • 163a Huisgen R. Angew. Chem. Int. Ed. 1963; 2: 565
    • 163b Kacprzak K. Skiera I. Piasecka M. Paryzek Z. Chem. Rev. 2016; 116: 5689
    • 163c Johansson JR. Beke-Somfai T. Stålsemeden AS. Kann N. Chem. Rev. 2016; 116: 14726
    • 163d Brittain WD. G. Buckley BR. Fossey JS. ACS Catal. 2016; 6: 3629
    • 163e Barlow TM. A. Tourwé D. Ballet S. Eur. J. Org. Chem. 2017; 4678
    • 164a Cai Z.-J. Lu X.-M. Zi Y. Yang C. Shen L.-J. Li J. Wang S.-Y. Ji S.-J. Org. Lett. 2014; 16: 5108
    • 164b Senadi GC. Hu W.-P. Lu T.-Y. Garkhedkar AM. Vandavasi JK. Wang J.-J. Org. Lett. 2015; 17: 1521
    • 164c Inturi SB. Kalita B. Ahamed AJ. Org. Biomol. Chem. 2016; 14: 11061
    • 165a Chen J. Jiang Y. Yu J.-T. Cheng J. J. Org. Chem. 2016; 81: 271
    • 165b Ishikawa T. Kimura M. Kumoi T. Iida H. ACS Catal. 2017; 7: 4986
  • 166 Panda S. Maity P. Manna D. Org. Lett. 2017; 19: 1534
  • 168 Wei S. Li S. Chen C. He Z. Du X. Wang L. Zhang C. Wang Q. Pu L. Adv. Synth. Catal. 2017; 359: 1825
    • 169a Kong Y. Zhang W. Tang M. Wang H. Tetrahedron 2013; 69: 7487
    • 169b Theerthagiri P. Lalitha A. J. Iran. Chem. Soc. 2013; 10: 717