Synlett 2018; 29(06): 779-784
DOI: 10.1055/s-0036-1591892
letter
© Georg Thieme Verlag Stuttgart · New York

Dimerization of Aromatic Compounds Using Palladium-Carbon-Catalyzed Suzuki–Miyaura Cross-Coupling by One-Pot Synthesis

Fangyu Du
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
,
Qifan Zhou
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
,
Dongdong Liu
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
,
Ting Fang
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
,
Yajie Shi
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
,
Yang Du
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
,
Guoliang Chen*
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, P. R. of China   Email: spucgl@163.com
› Author Affiliations
Financial support from the Natural Science Foundation of Liaoning Province (201602707) and the Discipline Construction Program of Shenyang Pharmaceutical University (52134606) is gratefully acknowledged.
Further Information

Publication History

Received: 04 November 2017

Accepted after revision: 18 December 2017

Publication Date:
31 January 2018 (online)


Abstract

The aromatic dimers play a significant role in many aspects. Herein, we report a simple palladium-carbon catalyst that is highly effective for the dimerization of brominated aromatic compounds under mild conditions using abundant brominated aromatic compounds, bis(pinacolate)diboron and potassium acetate by a ‘one-pot’ method. This process, which we believe proceeds via a Suzuki–Miyaura cross-coupling reaction mechanism, allows access to a variety of aromatic compounds under mild reaction conditions and has a good functional group tolerance with moderate to high yields.

Supporting Information

 
  • References and Notes

  • 1 Runeberg J. Faurholt C. Stenhagen E. Sillén LG. Zaar B. Diczfalusy E. Acta Chem. Scand. 1958; 12: 188
  • 2 Agharahimi MR. Lebel NA. J. Org. Chem. 1995; 60: 1856
  • 3 Anrong L. CN 1270168, 2000 .
  • 4 Reggio PH. AAPS J. 2006; 8: E322
  • 5 Huang J. Chen S. Zhang JJ. Huang XY. Nat. Struct. Mol. Biol. 2013; 20: 419
  • 6 Zhang J. Ferguson SS. Barak LS. Bodduluri SR. Laporte SA. Law PY. Caron MG. Hebei Med. 2005; 95: 7157
  • 7 Chung CY. Kuo WL. Hwang TL. Chung MI. Chen JJ. Chem. Biodiversity 2015; 12: 1263
  • 8 Si T. Li B. Xiong W. Xu B. Tang W. Org. Biomol. Chem. 2017; 15: 9903
  • 9 Goto H. Katagiri H. Furusho Y. Yashima E. J. Am. Chem. Soc. 2006; 128: 7176
  • 10 Yuan X. Wu L. Zong Z. Wei X. Modern Chemical Industry 1999; 19: 12
  • 11 Dong R. Sun XB. Li YB. Zhang JX. Modern Chemical Industry 2012; 32: 22
  • 12 Miyaura N. Suzuki A. Chem. Informationsdienst 1979; 19: 135
  • 13 Heck RF. J. Am. Chem. Soc. 1968; 90: 5518
  • 14 Cassar L. J. Organomet. Chem. 1975; 93: 253
  • 15 Ilie A. Roiban GD. Reetz MT. ChemistrySelect 2017; 2: 1392
  • 16 Fyfe JW. Fazakerley NJ. Watson AJ. Synfacts 2017; 56: 1249
  • 17 Mondal M. Begum T. Gogoi PK. Bora U. ChemistrySelect 2016; 1: 4645
  • 18 Sarvestani M. Azadi R. Appl. Organomet. Chem. 2016; 31: e3667
  • 19 Ishiyama T. Murata M. Miyaura N. J. Org. Chem. 1995; 60: 7508
  • 20 Molander GA. Dehmel F. J. Am. Chem. Soc. 2004; 35: 10313
    • 21a Ceylan M. Fındık E. Seçen H. Helv. Chim. Acta 2010; 91: 559
    • 21b Ito R. Migita T. Morikawa N. Okuni M. Simamura O. Bull. Chem. Soc. Jpn. 2006; 36: 985
    • 21c Bamfield P. Quan PM. Synthesis 1978; 537
    • 21d Kern W. Ebersbach HW. Ziegler I. Makromol. Chem. 1959; 31: 154
    • 21e Berezin AA. Koutentis PA. Tetrahedron 2011; 67: 4069
    • 21f James J. GB 857153, 1960
    • 21g Filippi S. Madrigali L. Polacco G. Magagnini P. La Mantia FP. Acierno D. Polym. Eng. Sci. 2010; 46: 139
    • 21h Shingte RD. Rege AV. Pishavikar DG. Shah SV. J. Univ. Bombay, Sci. 1951; 20: 89
    • 21i Reuter R. Wegner HA. Chemistry 2011; 17: 2987
    • 21j Lee K. Lee PH. Tetrahedron Lett. 2008; 49: 4302
    • 21k Zeng M. Du Y. Shao L. Qi C. Zhang XM. J. Org. Chem. 2010; 75: 2556
    • 21l Ogata Y. Hojo M. Morikawa M. Maekawa J. J. Org. Chem. 1962; 27: 3373
    • 21m Metallinos C. Zaifman J. Belle LV. Dodge L. Pilkington M. Organometallics 2009; 28: 4534
    • 21n Kajigaeshi S. Nakagawa T. Nagasaki N. Fujisaki S. Synthesis 1985; 674
    • 21o Somogyi L. J. Heterocycl. Chem. 2010; 44: 1235
  • 22 General ProcedureTo a solution of brominated aromatic compounds (1 equiv), bis(pinacolate)diboron (1.5 equiv), and anhydrous ethanol (15 mL) was added palladium-carbon (0.01 equiv), followed by potassium acetate (3 equiv) under argon. The mixture was heated to 60 °C with stirring for the indicated time. The reactor was cooled to room temperature, and the reaction mixture was filtered, and the filtrate was concentrated under reduced pressure. The residue was extracted with dichloromethane (3 × 20 mL), and the organic layer was washed with water (2 × 20 mL) and once with brine (25 mL), dried over magnesium sulfate and concentrated in vacuo. The product was purified by flash column chromatography on silica gel using petroleum ether as eluent.Biphenyl (3a)Yield 0.97 g, 98.7%; pale solid; mp 69–71 °C (lit.21a mp 69–71 ℃); Rf = 0.23 (PE). 1H NMR (400 MHz, CDCl3): δ = 7.60 (t, J = 1.24 Hz, 2 H), 7.44 (t, J = 7.20 Hz, 2 H), 7.34 (t, J = 7.36 Hz, 1 H). 13C NMR (150 MHz, CDCl3): δ = 141.2, 128.7, 127.2, 127.1. GC–MS: m/z = 154.2.4,4′-Dimethyl-1,1′-biphenyl (3b)Yield 0.52 g, 98.1%; white solid; mp 125 ℃ (lit.21b mp 125 ℃); Rf  = 0.50 (PE). 1H NMR (600 MHz, CDCl3): δ = 7.45 (d, J = 7.68 Hz, 2 H), 7.24 (d, J = 8.22 Hz, 2 H), 2.38 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 138.3, 136.7, 129.4, 126.8, 21.1. GC–MS: m/z = 182.2.Benzerythrene (3c)Yield 0.20 g, 30.3%; white solid; mp > 300 ℃ (lit.21c mp 315–318 °C); Rf = 0.57 (EtOAc/PE = 1:10). 1H NMR (400 MHz, CDCl3): δ = 7.77–7.37 (m, 18 H). 13C NMR (150 MHz, CDCl3): δ = 140.7, 140.3, 139.6, 128.8, 127.6, 127.5, 127.1. GC–MS: m/z = 306.2.5,5,5′,5′,8,8,8′,8′-Octamethyl-5,5′,6,6′,7,7′,8,8′-octahydro-2,2′-binaphthalene (3d)Yield 0.35 g, 50.0%; colorless oily liquid; Rf = 0.41 (PE). 1H NMR (400 MHz, CDCl3): δ = 7.49 (s, 2 H), 7.48–7.32 (m, 4 H), 1.73 (s, 8 H), 1.35 (d, J = 5.08 Hz, 24 H). 13C NMR (150 MHz, CDCl3): δ = 144.9, 143.5, 138.9, 126.7, 125.3, 124.5, 35.2, 35.1, 34.3, 34.1, 31.9, 31.8. GC–MS: m/z = 374.3.3,3′-Dimethoxy-1,1′-biphenyl (3e)Yield 0.38 g, 66.7%; colorless oily liquid (lit.21d mp 36 ℃); Rf = 0.57 (EtOAc/PE = 1:5). 1H NMR (600 MHz, CDCl3): δ = 7.32 (t, J = 7.86 Hz, 2 H), 7.17–7.15 (m, 2 H), 7.11 (t, J = 2.22 Hz, 2 H), 6.88–6.86 (m, 2 H), 3.81 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 159.9, 142.6, 129.7, 119.7, 112.9, 112.8, 55.2. GC–MS: m/z = 214.2.2,2′-Dimethoxy-1,1′-biphenyl (3f)Yield 0.50 g, 87.7%; white solid; mp 154–155 °C (lit.21e mp154–155 ℃); Rf = 0.60 (EtOAc/PE = 1:3). 1H NMR (400 MHz, CDCl3): δ = 7.35–7.31 (m, 2 H), 7.26–7.02 (m, 2 H), 7.00 (q, J1 = 7.44 Hz, J2 = 6.60 Hz, 4 H), 3.77 (s, 6 H). 13C NMR (150 MHz, CDCl3): δ = 157.0, 131.4, 128.6, 127.8, 120.3, 111.1, 55.7. ESI-MS: m/z [M + H]+ = 215.1.2,2′-Biphenol (3g)Yield 0.41 g, 75.5%; colorless oily liquid (lit.21f mp 50 °C); Rf = 0.35 (EtOAc/PE = 1:3). 1H NMR (400 MHz, CDCl3): δ = 7.38–7.33 (m, 2 H), 7.30 (d, J = 1.36 Hz, 1 H), 7.10–7.05 (q, J1 = 1.00 Hz, J2 = 8.64 Hz, 4 H), 5.40 (br, 2 H). 13C NMR (150 MHz, CDCl3): δ = 152.0, 130.6, 129.2, 122.9, 120.9, 115.9. ESI-MS: m/z [M + H]+ = 184.9.4,4′-Biphenol (3h)Yield 0.86 g, 90.0%; white solid; mp 283 ℃ (lit.21g mp 282–284 ℃); Rf = 0.50 (EtOAc/PE = 1:2). 1H NMR (400 MHz, DMSO-d 6): δ = 9.38 (s, 2 H), 7.37 (d, J = 8.52 Hz, 4 H), 6.79 (d, J = 8.52 Hz, 4 H). 13C NMR (150 MHz, DMSO-d 6): δ = 155.7, 130.5, 126.3, 115.0. ESI-MS: m/z [M + H]+ = 184.9.4,4′-Bianiline (3i)Yield 0.50 g, 94.3%; brown solid; mp 117–119 °C (lit.21h mp 80 ℃); Rf = 0.15 (EtOAc/PE = 1:3). 1H NMR (400 MHz, CDCl3): δ = 7.35 (d, J = 7.8 Hz, 4 H), 6.74 (d, J = 7.8 Hz, 4 H), 3.67 (s, 4 H). 13C NMR (150 MHz, DMSO-d 6): δ = 146.2, 128.0, 125.4, 113.7. ESI-MS: m/z [M + H]+ = 185.1.3,3′-Diaminobiphenyl (3j)Yield (40 mg, 7.4%); brown solid; mp 89–90 °C (lit.21i mp 93 ℃); Rf = 0.26 (EtOAc/PE = 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.22–7.16 (q, J1 = 8.32 Hz, J2 = 16.08 Hz, 2 H), 6.95 (d, J = 7.64 Hz, 2 H), 6.84 (s, 2 H), 6.64–6.62 (q, J 1 = 1.44 Hz, J 2 = 7.88 Hz, 2 H). 13C NMR (150 MHz, DMSO-d 6): δ = 135.5, 133.7, 131.5, 115.4, 115.3, 112.7. ESI-MS: m/z [M+H]+ = 185.1.5,5′-Difluoro-2,2′-bipyridine (3k)Yield 0.54 g, 98.2%; off-white solid; mp 153–154 °C (lit.21j mp 153–154 ℃); Rf = 0.87 (EtOAc/PE = 1:5). 1H NMR (600 MHz, CDCl3): δ = 8.50 (d, J = 2.34 Hz, 2 H), 8.39 (dd, J1 = 4.38 Hz, J2 = 8.76 Hz, 2 H), 7.54–7.51 (m, 2 H). 13C NMR (150 MHz, CDCl3): δ = 160.7, 159.0, 151.4, 151.42, 137.3, 137.1, 123.9, 123.8, 122.3, 122.2. GC-MS: m/z = 192.2.2,2′-Bipyridine (3l)Yield 0.41 g, 41.8%; white solid; mp 72 °C (lit.21k mp 71–72 ℃); Rf = 0.27 (EtOAc/PE = 1:5). 1H NMR (600 MHz, CDCl3): δ = 8.71 (d, J = 4.26 Hz, 2 H), 8.44 (d, J = 7.86 Hz, 2 H), 7.85 (t, J = 7.62 Hz, 2 H), 7.34 (t, J = 5.4 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 156.0, 149.1, 137.1, 123.8, 121.2. ESI-MS: m/z [M + H]+ = 157.1.4,4′-Bis(methoxycarbonyl)biphenyl (3m)Yield 0.30 g, 48.4%); white solid; mp 224 °C (lit.21l mp 224 ℃); Rf = 0.56 (EtOAc/PE = 1:5). 1H NMR (400 MHz, CDCl3): δ = 8.15 (d, J = 8.36 Hz, 4 H), 7.72 (q, J1 = 8.40 Hz, J2 = 1.60 Hz, 4 H), 3.97 (s, 6 H). 13C NMR (150 MHz, DMSO-d 6): δ = 167.4, 143.7, 130.4, 129.1, 127.8, 52.7. GC–MS: m/z = 270.2.1,2-Diphenylethane (3n)Yield 0.83 g, 78.0%; white solid; mp 48–50 °C (lit.21m mp 48–50 ℃); Rf = 0.37 (EtOAc/PE = 1:5). 1H NMR (400 MHz, CDCl3): δ = 7.28 (m, 5 H), 7.20 (m, 5 H), 2.92 (s, 4 H). 13C NMR (150 MHz, CDCl3): δ = 141.8, 128.4, 128.3, 125.9, 37.9. GC–MS: m/z = 182.2.2-Naphthoic Acid (3o)Yield 0.68 g, 98.8%; white solid; mp 174–180 °C (lit.21n mp 180–183 ℃); Rf = 0.57 (EtOAc/PE/AcOH = 1:3:0.2). 1H NMR (600 MHz, CDCl3): δ = 8.74 (s, 1 H), 8.15 (d, J = 8.52 Hz, 1 H), 8.02 (d, J = 8.16 Hz, 1 H), 7.93 (t, J = 9.18 Hz, 2 H), 7.66–7.58 (m, 2 H). 13C NMR (150 MHz, CDCl3): δ = 171.9, 136.0, 132.4, 132.2, 129.6, 128.7, 128.4, 127.8, 126.8, 126.4, 125.4. ESI-MS: m/z [M – H] = 170.9.Benzoic Acid (3p)Yield 0.47 g, 93.3%; white solid; mp 120–121 °C (lit.21o mp 119–121 ℃); Rf = 0.60 (EtOAc/PE = 1:5). 1H NMR (600 MHz, CDCl3): δ = 8.13 (dd, J1 = 1.02 Hz, J2 = 8.10 Hz, 2 H), 7.63–7.61 (m, 1 H), 7.49 (t, J = 7.68 Hz, 2 H). 13C NMR (150 MHz, CDCl3): δ = 172.4, 133.8, 130.2, 129.3, 128.5. ESI-MS: m/z [M – H] = 120.9.