Synthesis 2018; 50(06): 1264-1274
DOI: 10.1055/s-0036-1591732
paper
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of 1′,2′-cis-Disubstituted Carbocyclic ribo-Nucleoside Analogues

Simon Weising
a   Organische Chemie, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany   Email: chris.meier@chemie.uni-hamburg.de
,
Ilaria Torquati
a   Organische Chemie, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany   Email: chris.meier@chemie.uni-hamburg.de
b   School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, via S. Agostino 1, 62032 Camerino, Italy
,
Chris Meier*
a   Organische Chemie, Fakultät für Mathematik, Informatik und Naturwissenschaften, Universität Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany   Email: chris.meier@chemie.uni-hamburg.de
› Author Affiliations
The authors are grateful to Universität Hamburg and the Italian MIUR fund – (PRIN 2009, Prot. N. 20094Bj9R7_002) for financial support.
Further Information

Publication History

Received: 15 October 2017

Accepted after revision: 03 November 2017

Publication Date:
20 December 2017 (online)


Abstract

Herein we disclose an efficient strategy for the convergent synthesis of 1′,2′-cis-disubstituted carbocyclic ribo-nucleoside analogues. Starting from an enantiomerically pure cyclopentenol precursor, the key step for the preparation of the highly functionalized carbocyclic building block is an asymmetric dihydroxylation. Employing different variants of the Mitsunobu protocol, the condensation with all-natural nucleobases or their precursors affords a series of ribo-configured carbocyclic 1′,2′-cis-disubstituted nucleoside analogues.

Supporting Information

 
  • References

  • 1 Marquez V.-E. Lim M.-I. Med. Chem. Rev. 1986; 6: 1
  • 2 Marquez V.-E. In Advances in Antiviral Drug Design . Vol 2. De Clercq E. JAI Press Inc; London: 1996: 89-146
    • 3a Borthwick AD. Biggadike K. Tetrahedron 1992; 48: 571
    • 3b Agrofoglio L. Suhas E. Farese A. Condom R. Challand SR. Earl RA. Guedj R. Tetrahedron 1994; 50: 10611
    • 3c Wang J. Jin Y. Rapp KL. Schinazi RF. Chu CK. J. Med. Chem. 2007; 50: 1828
    • 3d Nishiyama S. Ueki S. Watanabe T. Yamamura S. Kato K. Takita T. Tetrahedron Lett. 1991; 32: 2141
    • 3e Zhao Y. Yang T. Lee M. Lee D. Newton MG. Chu CK. J. Org. Chem. 1995; 60: 5236
    • 3f Racine S. de Nanteuil F. Serrano E. Waser J. Angew. Chem. Int. Ed. 2014; 53: 8484
    • 3g Xie M.-S. Zhou P. Niu H.-Y. Qu G.-R. Guo H.-M. Org. Lett. 2016; 18: 4344
    • 3h Huang K.-X. Xie M.-S. Zhao G.-F. Qu G.-R. Guo H.-M. Adv. Synth. Catal. 2016; 358: 3627
    • 4a Seley KL. Schneller SW. Korba B. Nucleosides Nucleotides 1997; 12: 2095
    • 4b Zimmermann SC. Sadler JM. Andrei G. Snoeck R. Balzarini J. Seley-Radtke KL. Med. Chem. Commun. 2011; 2: 650
    • 5a Daluge SM. Good SS. Faletto MB. Miller WH. St Clair MH. Boone LR. Tisdale M. Parry NR. Reardon JE. Dornsife RE. Averett DR. Krenitsky T. Antimicrob. Agents Chemother. 1997; 41: 1082
    • 5b Daluge SM. Martin MT. Sickles BR. Livingston DA. Nucleosides Nucleotides Nucleic Acids 2000; 19: 297
    • 5c Faletto MB. Miller WH. Garvey EP. St Clair MH. Daluge SM. Good SS. Antimicrob. Agents Chemother. 1997; 41: 1099
    • 6a Bisacchi GS. Chao ST. Bachard C. Daris JP. Innaimo S. Jacobs GA. Kocy O. Lapointe P. Martel A. Mechant Z. Slusachyk WA. Sundeen JE. Young MG. Colonno R. Zahler R. Med. Chem. Lett. 1997; 7: 127
    • 6b Levine S. Hernandez D. Yamanaka G. Zhang S. Rose R. Weinheimer S. Colonno RJ. Antimicrob. Agents Chemother. 2002; 46: 2525
  • 7 Mahler M. Reichardt B. Hartjen P. van Lunzen J. Meier C. Chem. Eur. J. 2012; 18: 11046
  • 8 Gollnest T. de Oliveira TD. Rath A. Hauber I. Schols D. Balzarini J. Meier C. Angew. Chem. 2016; 128: 5341
  • 9 Ludek OR. Krämer T. Balzarini J. Meier C. Synthesis 2006; 1313
  • 10 Santana L. Teijeira M. Uriarte E. Balzarini J. De Clerq E. Nucleosides Nucleotides 1995; 14: 521
  • 11 Biggadike K. Borthwick AD. Evans D. Exall AM. Kirk BE. Roberts SM. Stephenson L. Youds P. J. Chem. Soc., Perkin Trans. 1 1988; 549
  • 12 Jessel S. Meier C. Eur. J. Org. Chem. 2011; 1702
  • 13 Cossy J. Ranaivosata J.-L. Bellosta V. Wietzke R. Synth. Commun. 1995; 25: 3109
    • 14a Sharpless KB. Amberg W. Bennani YL. Crispino GA. Hartung J. Jeong KS. Kwong HL. Morikawa K. Wang ZM. Xu DQ. Zhang XL. J. Org. Chem. 1992; 57: 2768
    • 14b Kolb HC. VanNieuwenhze MS. Sharpless KB. Chem. Rev. 1994; 94: 2483
    • 14c Jacobsen EN. Marko I. Mungall WS. Schroder G. Sharpless KB. J. Am. Chem. Soc. 1988; 110: 1968
  • 16 Radi M. Rao JR. Jha AK. Chu CK. Nucleosides Nucleotides Nucleic Acids 2009; 28: 504
    • 17a Cadet G. Chan C.-S. Daniel RY. Davis CP. Guiadeen D. Rodriguez G. Thomas T. Walcott S. Scheiner P. J. Org. Chem. 1988; 63: 4574
    • 17b Pérez-Pérez M.-J. Rozenski J. Busson R. Herdewijn P. J. Org. Chem. 1995; 60: 1531
  • 18 Tsai J.-Y. Bouhadir KH. Zhou JL. Webb TR. Sun Y. Shevlin PB. J. Org. Chem. 2003; 68: 1235
  • 19 Johnson DC. II. Widlanski TS. Org. Lett. 2004; 6: 4643
  • 20 Bhatt MV. Kulkarni SU. Synthesis 1984; 249
  • 21 Jung ME. Lyster MA. J. Org. Chem. 1977; 42: 3761
  • 22 Nucleic Acids in Chemistry and Biology . 3rd ed.; Blackburn GM. Gait MJ. Loakes D. Williams DM. RSC Publishing; Cambridge: 2006: 21
  • 23 CCDC 1566838 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.