Synthesis 2018; 50(06): 1307-1314
DOI: 10.1055/s-0036-1591724
paper
© Georg Thieme Verlag Stuttgart · New York

Brønsted Acid Catalyzed Domino 1,6-Addition/Intramolecular Cyclization­ Reactions: Diastereoselective Synthesis of Dihydro­coumarin Frameworks

Zheng Cao
,
Gui-Xiang Zhou
,
Chun Ma
,
Kang Jiang
,
Guang-Jian Mei*
We much appreciate the financial support from NSFC (21702077), the Natural Science Foundation of Jiangsu Province (BK20170227), PAPD, TAPP and the Undergraduate Student Project of Jiangsu Province.
Further Information

Publication History

Received: 19 September 2017

Accepted after revision: 20 October 2017

Publication Date:
21 November 2017 (online)


Abstract

An efficient domino 1,6-addition/intramolecular cyclization reaction between para-quinone methides (p-QMs) and azlactones under Brønsted acid catalysis was established. A series of highly functionalized dihydrocoumarins were constructed in good to excellent yields (up to 96%) with excellent diastereoselectivities (all >20:1 d.r.). In this process, the Brønsted acid plays a crucial role not only in activating the two substrates, but also in controlling the diastereoselectivity of the reaction via hydrogen-bonding interactions. In addition, this protocol demonstrates the great practicability of utilizing p-QMs in domino reactions.

Supporting Information

 
  • References

  • 1 These authors contributed equally to the work.
    • 2a Kamat DP. Tilve SG. Kamat VP. Kirtany JK. Org. Prep. Proced. Int. 2015; 47: 1
    • 2b Semeniuchenko V. Groth U. Khilya V. Synthesis 2009; 3533
    • 3a Posakony J. Hirao M. Stevens S. Simon JA. Bedalov A. J. Med. Chem. 2004; 47: 2635
    • 3b Matsuo A. Yuki S. Nakayama M. Chem. Lett. 1983; 1041
  • 4 Nishiyama T. Ohnishi J. Hashiguchi Y. Biosci., Biotechnol., Biochem. 2001; 65: 1127
    • 5a Brenzan MA. Nakamura CV. Filho BP. D. Ueda-Nakamura T. Young MC. M. Correa AG. Junior JA. dos Santos AO. Cortez DA. G. Biomed. Pharmacother. 2008; 62: 651
    • 5b Sun J. Ding WX. Hong XP. Zhang KY. Zou Y. Chem. Nat. Compd. 2012; 48: 16
    • 5c Zhang XF. Xie L. Liu Y. Xiang JF. Li L. Tang YL. J. Mol. Struct. 2008; 888: 145

      For selected examples, see:
    • 6a Xu L. Shao Z. Wang L. Xiao J. Org. Lett. 2014; 16: 796
    • 6b Wu Z. Wang X. Li F. Wu J. Wang J. Org. Lett. 2015; 17: 3588
    • 6c Akula R. Guiry PJ. Org. Lett. 2016; 18: 5472
    • 6d Teng B. Chen W. Dong S. Kee CW. Gandamana DA. Zong L. Tan C.-H. J. Am. Chem. Soc. 2016; 138: 9935
    • 6e Zhang YC. Zhu QN. Yang X. Zhou LJ. Shi F. J. Org. Chem. 2016; 81: 1681
    • 6f Jin J.-H. Li X.-Y. Luo X. Fossey JS. Deng W.-P. J. Org. Chem. 2017; 82: 5424
    • 6g Wang Y. Pan J. Dong J. Yu C. Li T. Wang X.-S. Shen S. Yao C. J. Org. Chem. 2017; 82: 1790
    • 6h Yao W. Yu Z. Wen S. Ni H. Ullah N. Lan Y. Lu Y. Chem. Sci. 2017; 8: 5196

      For selected reviews, see:
    • 7a Pathak TP. Sigman MS. J. Org. Chem. 2011; 76: 9210
    • 7b Willis NJ. Bray CD. Chem. Eur. J. 2012; 18: 9160
    • 7c Bai W.-J. David JG. Feng Z.-G. Weaver MG. Wu K.-L. Pettus TR. R. Acc. Chem. Res. 2014; 47: 3655
    • 7d Singh MS. Nagaraju A. Anand N. Chowdhury S. RSC Adv. 2014; 4: 55924
    • 7e Jaworski AA. Scheidt KA. J. Org. Chem. 2016; 81: 10145

      For selected examples, see:
    • 8a Lewis RS. Garza CJ. Dang AT. Pedro TK. A. Chain WJ. Org. Lett. 2015; 17: 2278
    • 8b Guo W. Wu B. Zhou X. Chen P. Wang X. Zhou Y.-G. Liu Y. Li C. Angew. Chem. Int. Ed. 2015; 54: 4522
    • 8c Luan Y. Schaus SE. J. Am. Chem. Soc. 2012; 134: 19965
    • 8d Mattson AE. Scheidt KA. J. Am. Chem. Soc. 2007; 129: 4508
    • 9a Yang QQ. Xiao WJ. Eur. J. Org. Chem. 2017; 233
    • 9b Lian XL. Adili A. Liu B. Tao ZL. Han ZY. Org. Biomol. Chem. 2017; 15: 3670
    • 9c Jiang X.-L. Liu S.-J. Gu Y.-Q. Mei G.-J. Shi F. Adv. Synth. Catal. 2017; 359: 3341

      For selected examples, see:
    • 10a Wang Z.-B. Sun J.-W. Org. Lett. 2017; 19: 2334
    • 10b Chen P. Wang K. Guo W. Liu X. Liu Y. Li C. Angew. Chem. Int. Ed. 2017; 56: 3689
    • 10c Alamsetti SK. Spanka M. Schneider C. Angew. Chem. Int. Ed. 2016; 55: 2392
    • 10d Zhao J.-J. Zhang Y.-C. Xu M.-M. Tang M. Shi F. J. Org. Chem. 2015; 80: 10016
    • 10e Zhao J.-J. Sun S.-B. He S.-H. Wu Q. Shi F. Angew. Chem. Int. Ed. 2015; 54: 5460
    • 10f Tsui GC. Liu L. List B. Angew. Chem. Int. Ed. 2015; 54: 7703
    • 10g Saha S. Schneider C. Org. Lett. 2015; 17: 648
    • 10h Hsiao C.-C. Raja S. Liao H.-H. Atodiresei I. Rueping M. Angew. Chem. Int. Ed. 2015; 54: 5762
    • 10i Hsiao C.-C. Liao H.-H. Rueping M. Angew. Chem. Int. Ed. 2014; 53: 13258
    • 10j El-Sepelgy O. Haseloff S. Alamsetti SK. Schneider C. Angew. Chem. Int. Ed. 2014; 53: 7923
    • 10k Chen P. Wang K. Guo W. Liu X. Liu Y. Li C. Angew. Chem. Int. Ed. 2017; 56: 3689
    • 11a Lv H. Jia W.-Q. Sun L.-H. Ye S. Angew. Chem. Int. Ed. 2013; 52: 8607
    • 11b Izquierdo J. Orue A. Scheidt KA. J. Am. Chem. Soc. 2013; 135: 10634
    • 11c Mei G.-J. Zhu Z.-Q. Zhao J.-J. Bian C.-Y. Chen J. Chen R.-W. Shi F. Chem. Commun. 2017; 53: 2768
  • 12 Yu X.-Y. Chen J.-R. Wei Q. Cheng H.-G. Liu Z.-C. Xiao W.-J. Chem. Eur. J. 2016; 22: 6774

    • For related reviews, see:
    • 13a Caruana L. Fochi M. Bernardi L. Molecules 2015; 20: 11733
    • 13b Parra A. Tortosa M. ChemCatChem 2015; 7: 1524
    • 13c Chauhan P. Kaya U. Enders D. Adv. Synth. Catal. 2017; 359: 888

      For selected examples, see:
    • 14a Chu W.-D. Zhang L.-F. Bao X. Zhao X.-H. Zeng C. Du J.-Y. Zhang G.-B. Wang F.-X. Ma X.-Y. Fan C.-A. Angew. Chem. Int. Ed. 2013; 52: 9229
    • 14b Caruana L. Kniep F. Johansen TK. Poulsen PH. Jørgensen KA. J. Am. Chem. Soc. 2014; 136: 15929
    • 14c Lou Y. Cao P. Jia T. Zhang Y. Wang M. Liao J. Angew. Chem. Int. Ed. 2015; 54: 12134
    • 14d Wang Z. Wong YF. Sun J. Angew. Chem. Int. Ed. 2015; 54: 13711
    • 14e Deng Y.-H. Zhang X.-Z. Yu K.-Y. Yan X. Du J.-Y. Huang H. Fan C.-A. Chem. Commun. 2016; 52: 4183
    • 14f Dong N. Zhang Z.-P. Xue X.-S. Li X. Cheng J.-P. Angew. Chem. Int. Ed. 2016; 55: 1460
    • 14g He F.-S. Jin J.-H. Yang Z.-T. Yu X. Fossey JS. Deng W.-P. ACS Catal. 2016; 6: 652
    • 14h Huang B. Shen Y.-Y. Mao Z.-J. Liu Y. Cui S.-L. Org. Lett. 2016; 18: 4888
    • 14i Jarava-Barrera C. Parra A. López A. Cruz-Acosta F. Collado-Sanz D. Cárdenas DJ. Tortosa M. ACS Catal. 2016; 6: 442
    • 14j Li X. Xu X. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 428
    • 14k Shen Y. Qi J. Mao Z. Cui S. Org. Lett. 2016; 18: 2722
    • 14l Wong Y.-F. Wang Z. Sun J. Org. Biomol. Chem. 2016; 14: 5751
    • 14m Zhang X.-Z. Deng Y.-H. Yan X. Yu K.-Y. Wang F.-X. Ma X.-Y. Fan C.-A. J. Org. Chem. 2016; 81: 5655
    • 14n Zhao K. Zhi Y. Wang A. Enders D. ACS Catal. 2016; 6: 657
    • 14o Li S. Liu Y. Huang B. Zhou T. Tao H. Xiao Y. Liu L. Zhang J. ACS Catal. 2017; 7: 2805
    • 14p Zhuge R. Wu L. Quan M. Butt N. Yang G. Zhang W. Adv. Synth. Catal. 2017; 359: 1028
    • 14q Molleti N. Kang J.-Y. Org. Lett. 2017; 19: 958

      For selected reviews on domino reactions, see:
    • 15a Enders D. Grondal C. Hüttl MR. M. Angew. Chem. Int. Ed. 2007; 46: 1570
    • 15b Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 2: 167
    • 15c Pellissier H. Chem. Rev. 2013; 113: 442
    • 15d Volla CM. R. Atodiresei I. Rueping M. Chem. Rev. 2014; 114: 2390

      For selected examples, see:
    • 16a Gai K. Fang X. Li X. Xu J. Wu X. Lin A. Yao H. Chem. Commun. 2015; 51: 15831
    • 16b Yuan Z. Fang X. Li X. Wu J. Yao H. Lin A. J. Org. Chem. 2015; 80: 11123
    • 16c Ma C. Huang Y. Zhao Y. ACS Catal. 2016; 6: 6408
    • 16d Yuan Z. Wei W. Lin A. Yao H. Org. Lett. 2016; 18: 3370
    • 16e Zhang X.-Z. Du J.-Y. Deng Y.-H. Chu W.-D. Yan X. Yu K.-Y. Fan C.-A. J. Org. Chem. 2016; 81: 2598
    • 16f Roiser L. Waser M. Org. Lett. 2017; 19: 2338
    • 16g Yuan Z. Gai K. Wu Y. Wu J. Lin A. Yao H. Chem. Commun. 2017; 53: 3485
    • 16h Yuan Z. Liu L. Pan R. Yao H. Lin A. J. Org. Chem. 2017; 82: 8743
    • 16i Zhang X.-Z. Deng Y.-H. Gan K.-J. Yan X. Yu K.-Y. Wang F.-X. Fan C.-A. Org. Lett. 2017; 19: 1752
  • 17 Zhao K. Zhi Y. Shu T. Valkonen A. Rissanen K. Enders D. Angew. Chem. Int. Ed. 2016; 55: 12104
  • 18 Liao JY. Ni Q. Zhao Y. Org. Lett. 2017; 19: 4074
  • 19 Liu S. Lan X.-C. Chen K. Hao W.-J. Li G. Tu S.-J. Jiang B. Org. Lett. 2017; 19: 3831
    • 20a Mei G.-J. Li D. Zhou G.-X. Shi Q. Cao Z. Shi F. Chem. Commun. 2017; 53: 10030
    • 20b Mei G.-J. Bian C.-Y. Li G.-H. Xu S.-L. Zheng W.-Q. Shi F. Org. Lett. 2017; 19: 3219
  • 21 Saleh SA. Tashtoush HI. Tetrahedron 1998; 54: 14157
  • 22 CCDC 1574412 (3aa) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures; also see the Supporting Information.