Synthesis 2018; 50(18): 3571-3588
DOI: 10.1055/s-0036-1591600
review
© Georg Thieme Verlag Stuttgart · New York

Application of Metathesis Reactions in the Synthesis and Transformations of Functionalized β-Amino Acid Derivatives

Loránd Kiss*
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary   Email: kiss.lorand@pharm.u-szeged.hu
,
Márton Kardos
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary   Email: kiss.lorand@pharm.u-szeged.hu
,
Csaba Vass
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary   Email: kiss.lorand@pharm.u-szeged.hu
,
Ferenc Fülöp
a   Institute of Pharmaceutical Chemistry, University of Szeged, 6720 Szeged, Eötvös u. 6, Hungary   Email: kiss.lorand@pharm.u-szeged.hu
b   MTA-SZTE Stereochemistry Research Group, Hungarian Academy of Sciences, 6720 Szeged, Eötvös u. 6, Hungary
› Author Affiliations
Further Information

Publication History

Received: 19 April 2018

Accepted after revision: 14 May 2018

Publication Date:
26 July 2018 (online)


Abstract

Because of their biological relevance, cyclic β-amino acids have generated increasing interest and had significant impact in drug research over the past two decades. Their preparation and further functionalization towards new types of molecular entities have received large interest in synthetic and medicinal chemistry. Various types of metathesis reactions, such as ring-opening (ROM), ring-closing (RCM), or cross metathesis (CM) are used widely for access to either alicyclic β-amino acids or other densely functionalized derivatives of this group of compounds. This account intends to provide an insight into the most relevant synthetic routes to this class of derivatives with the application of metathesis reactions. The review focuses on the presentation of selective and stereocontrolled methodologies in view of versatility, robustness, limitations and efficiency.

1 Introduction

2 Synthesis and Transformation of Cyclic β-Amino Acids through Metathesis Reactions

2.1 Synthesis of Five- and Six-Membered Cyclic β-Amino Acids by Ring-Closing Metathesis

2.2 Synthesis of Five- and Six-Membered Cyclic β-Amino Acids by Cross Metathesis

2.3 Synthesis of β-Amino Acids with Larger Ring Systems by Ring- Closing Metathesis

2.4 Synthesis of β-Amino Acids with Condensed Ring Systems by Ring-Rearrangement Metathesis

2.5 Stereocontrolled One-Step Synthesis of Functionalized Cispentacin and Transpentacin Derivatives

2.5.1 Stereocontrolled Synthesis of Functionalized Cispentacin and Transpentacin Derivatives through Ring-Opening Metathesis of Norbornene β-Amino Acid Derivatives

2.5.2 Stereocontrolled Synthesis of Functionalized Azetidinones and β-Amino Acid Derivatives from Condensed Ring β-Lactams by Ring-Opening Metathesis

2.5.3 Carbon–Carbon Double Bond Functionalization of β-Amino Acid Derivatives and β-Lactams with α,β-Unsaturated Carbonyl Compounds through Cross Metathesis

2.5.4 Synthesis of Functionalized β-Amino Acid Derivatives and β-Lactams through Chemoselective Cross Metathesis

3 Conclusions and Outlook

 
  • References

    • 1a Fülöp F. Chem. Rev. 2001; 101: 2181
    • 1b Juaristi E. Soloshonok V. Enantioselective Synthesis of β-Amino Acids . 2nd ed. Wiley; Hoboken: 2005
    • 1c Risseeuw M. Overhand M. Fleet GW. J. Simone MI. Amino Acids 2013; 45: 613
    • 1d Mayans E. Gargallo A. Álvarez-Larena A. Illa O. Ortuño RM. Eur. J. Org. Chem. 2013; 1425
    • 1e Choi SH. Ivancic M. Guzei IA. Gellman SH. Eur. J. Org. Chem. 2013; 3464
  • 2 Kiss L. Fülöp F. Chem. Rev. 2014; 114: 1116
  • 3 Kiss L. Forró E. Fülöp F. Synthesis of Carbocyclic β-Amino Acids. In Amino Acids, Peptides and Proteins in Organic Chemistry. Vol. 1. Hughes AB. Wiley–VCH; Weinheim: 2009: 367
  • 4 Kuhl A. Hahn MG. Dumic M. Mittendorf J. Amino Acids 2005; 29: 89
  • 5 Park KH. Kurth MJ. Tetrahedron 2002; 58: 8629
  • 6 Pandey SK. Jogdand GF. Oliveira JC. A. Mata RA. Rajamohanan PR. Ramana CV. Chem. Eur. J. 2011; 17: 12946
  • 7 Coursindel T. Martinez J. Parrot I. Eur. J. Org. Chem. 2011; 4519
  • 8 Chandrasekhar S. Sudhakar A. Kiran MU. Babu BN. Jagadeesh B. Tetrahedron Lett. 2008; 49: 7368
  • 9 Mittendorf J. Kunisch F. Matzke M. Militzer H.-C. Schmidt A. Schönfeld W. Bioorg. Med. Chem. Lett. 2003; 13: 433
  • 10 Forró E. Fülöp F. Mini Rev. Org. Chem. 2004; 1: 93
  • 11 Hook DF. Bindschädler P. Mahajan YR. Šebesta R. Kast P. Seebach D. Chem. Biodiversity 2005; 2: 591
  • 12 Haase HS. Peterson-Kaufman KJ. Levengood SK. L. Checco JW. Murphy WL. Gellman SH. J. Am. Chem. Soc. 2012; 134: 7652
  • 13 Lelais G. Seebach D. Biopolymers 2004; 76: 206
  • 14 Porter EA. Weisblum B. Gellman SH. J. Am. Chem. Soc. 2005; 127: 11516
  • 15 Martinek TA. Fülöp F. Chem. Soc. Rev. 2012; 41: 687
  • 16 Berlicki L. Pilsl L. Wéber E. Mándity IM. Cabrele C. Martinek TA. Fülöp F. Reiser O. Angew. Chem. Int. Ed. 2012; 51: 2208
  • 17 Connon SJ. Blechert S. Angew. Chem. Int. Ed. 2003; 42: 1900
  • 18 Monsaert S. Vila AL. Drozdzak R. Van Der Voort P. Verpoort F. Chem. Soc. Rev. 2009; 38: 3360
  • 19 Kress S. Blechert S. Chem. Soc. Rev. 2012; 41: 4389
  • 20 Koh MJ. Nguyen TT. Lam JK. Torker S. Hyvl J. Schrock RR. Hoveyda AH. Nature (London) 2017; 542: 80
  • 21 Chauvin Y. Angew. Chem. Int. Ed. 2006; 45: 3741
  • 22 Sanford MS. Love JA. Grubbs RH. J. Am. Chem. Soc. 2001; 123: 6543
  • 23 Smith BJ. Sulikowski GA. Angew. Chem. Int. Ed. 2010; 49: 1599
  • 24 Prunet J. Eur. J. Org. Chem. 2011; 3634
  • 25 Jakubec P. Cockfield DM. Dixon DJ. J. Am. Chem. Soc. 2009; 131: 16632
  • 26 Rosillo M. Domínguez G. Casarrubios L. Amador U. Pérez-Castells J. J. Org. Chem. 2004; 69: 2084
  • 27 Meek SJ. O’Brien RV. Llaveria J. Schrock RR. Hoveyda AH. Nature (London) 2011; 471: 461
  • 28 Cortez GA. Baxter CA. Schrock RR. Hoveyda AH. Org. Lett. 2007; 9: 2871
  • 29 Chikkali S. Mecking S. Angew. Chem. Int. Ed. 2012; 51: 5802
  • 30 Higman CS. Lummiss JA. M. Fogg DE. Angew. Chem. Int. Ed. 2016; 55: 3552
    • 31a Trnka TM. Grubbs RH. Acc. Chem. Res. 2001; 34: 18
    • 31b Brik A. Adv. Synth. Catal. 2008; 350: 1661
    • 31c Fustero S. Simón-Fuentes A. Barrio P. Haufe G. Chem. Rev. 2015; 115: 871
  • 32 Van Lierop BJ. Lummiss JA. M. Fogg DE. Ring-Closing Metathesis . In Olefin Metathesis Therory and Practice . Grela K. John Wiley & Sons; Hoboken: 2014: 85
    • 33a Abell AD. Gardiner J. Org. Lett. 2002; 4: 3663
    • 33b Sleebs BE. Nguyen NH. Hughes AB. Tetrahedron 2013; 69: 6275
  • 34 Gardiner J. Anderson KH. Downard A. Abell AD. J. Org. Chem. 2004; 69: 3375
    • 35a Chippindale AM. Davies SG. Iwamoto K. Parkin RM. Smethurst CA. P. Smith AD. Rodriguez-Solla H. Tetrahedron 2003; 59: 3253
    • 35b Davies SG. Fletcher AM. Roberts PM. Thomson JE. Zammit CM. Chem. Commun. 2013; 49: 7037
    • 35c Brock EA. Davies SG. Lee JA. Roberts PM. Thomson JE. Org. Lett. 2012; 14: 4278
    • 35d Davies SG. Fletcher AM. Lee JA. Roberts PM. Souleymanou MY. Thomson JE. Zammit CM. Org. Biomol. Chem. 2014; 12: 2702
  • 36 Davis FA. Theddu N. J. Org. Chem. 2010; 75: 3814
  • 37 Perlmutter P. Rose M. Vounatsos F. Eur. J. Org. Chem. 2003; 756
  • 38 Perlmutter P. Top. Curr. Chem. 1997; 190: 87
  • 39 Aparici I. Guerola M. Dialer C. Simón-Fuentes A. Sánchez-Roselló M. del Pozo C. Fustero S. Org. Lett. 2015; 17: 5412
    • 40a Fustero S. Sánchez-Roselló M. Sanz-Cervera JF. Aceña JL. del Pozo C. Fernández B. Bartolomé A. Asensio A. Org. Lett. 2006; 8: 4633
    • 40b Fustero S. Sanchez-Rosello M. Acena JL. Fernandez B. Asensio A. Sanz-Cerveza JF. del Pozo C. J. Org. Chem. 2009; 74: 3414
  • 41 Yudin AK. Chem. Sci. 2015; 6: 30
  • 42 Fustero S. Bartolomé A. Sanz-Cervera JF. Sánchez-Roselló M. Soler JG. de Arellano CR. Fuentes AS. Org. Lett. 2003; 5: 2523
    • 43a Yamanaka T. Ohkubo M. Kato M. Kawamura Y. Nishi A. Hosokawa T. Synlett 2005; 631
    • 43b Gardiner J. Aitken SG. McNabb SB. Zaman S. Abell AD. J. Organomet. Chem. 2006; 691: 5487
    • 44a Kotha S. Meshram M. Khedkar P. Banerjee S. Deodhar D. Beilstein J. Org. Chem. 2015; 11: 1833
    • 44b Holub N. Blechert S. Chem. Asian J. 2007; 2: 1064
  • 45 Winkler JD. Asselin SM. Shepard S. Yuan J. Org. Lett. 2004; 6: 3821
    • 46a Nadany AE. Mckendrick JE. Synlett 2006; 2139
    • 46b Maechling S. Norman SE. McKendrick JE. Basra S. Köppner K. Blechert S. Tetrahedron Lett. 2006; 47: 189
    • 46c Sonaglia L. Banfi L. Riva R. Basso A. Tetrahedron Lett. 2012; 53: 6516
  • 47 Kiss L. Kardos M. Forró E. Fülöp F. Eur. J. Org. Chem. 2015; 1283
  • 48 Kiss L. Nonn M. Sillanpaa R. Haukka M. Fustero S. Fülöp F. Chem. Asian J. 2016; 11: 3376
  • 49 Chatterjee AK. Choi T.-L. Sanders DP. Grubbs RH. J. Am. Chem. Soc. 2003; 125: 11360
  • 50 Nolan SP. Clavier H. Chem. Soc. Rev. 2010; 39: 3305
  • 51 Hoveyda AH. Lombardi PJ. O’Brien RV. Zhugralin AR. J. Am. Chem. Soc. 2009; 131: 8378
  • 52 Hoye TR. Zhao H. Org. Lett. 1999; 1: 1123
  • 53 Lin YA. Davis BG. Beilstein J. Org. Chem. 2010; 6: 1219
  • 54 Bouzbouz S. Cossy J. Org. Lett. 2001; 3: 1451
  • 55 Kardos M. Kiss L. Haukka H. Fustero S. Fülöp F. Eur. J. Org. Chem. 2017; 1894