Synthesis 2018; 50(16): 3224-3230
DOI: 10.1055/s-0036-1591568
special topic
© Georg Thieme Verlag Stuttgart · New York

Iodine-Mediated Intramolecular C–H Amination of Benzimidazoles: A Metal-Free Route to Dihydroimidazobenzimidazoles

Pinaki Bhusan De
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India   Email: tpunni@iitg.ernet.in
,
Sourav Pradhan
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India   Email: tpunni@iitg.ernet.in
,
Tariq A. Shah
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India   Email: tpunni@iitg.ernet.in
,
Tharmalingam Punniyamurthy*
Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India   Email: tpunni@iitg.ernet.in
› Author Affiliations
We thank Science and Engineering Research Board (EMR-2015-43) and Council of Scientific and Industrial Research [02(0255)-2016-EMR-II] for the financial support. T.A.S. thanks Science and Engineering Research Board (PDF/2017/002653) for financial support.
Further Information

Publication History

Received: 01 March 2018

Accepted after revision: 21 March 2018

Publication Date:
19 April 2018 (online)


Published as part of the Special Topic Modern Coupling Approaches and their Strategic Applications in Synthesis

Abstract

Iodine-mediated cyclization of benzimidazolylethylamines in the presence of base to give dihydroimidazobenzimidazoles via a de­hydrogenative cross-coupling of C(sp2)–H and N–H bonds is reported. Metal-free conditions, preservation of the optical purity, and substrate scope are the important practical features.

Supporting Information

 
  • References


    • For reviews, see:
    • 1a Li C.-J. Acc. Chem. Res. 2009; 42: 335
    • 1b Wencel-Delord J. Dröge T. Liu F. Glorius F. Chem. Soc. Rev. 2011; 40: 4740
    • 1c Arockiam PB. Bruneau C. Dixneuf PH. Chem. Rev. 2012; 112: 5879
    • 1d Louillat M.-L. Patureau FW. Chem. Soc. Rev. 2014; 43: 901
    • 1e Daugulis O. Roane J. Tran LD. Acc. Chem. Res. 2015; 48: 1053
    • 1f Kim H. Chang S. ACS Catal. 2016; 6: 2341
    • 1g Park Y. Kim Y. Chang S. Chem. Rev. 2017; 117: 9247
    • 1h Rit RK. Shankar M. Sahoo AK. Org. Biomol. Chem. 2017; 15: 1282

      For some recent examples, see:
    • 2a Haffemayer B. Gulias M. Gaunt MJ. Chem. Sci. 2011; 2: 312
    • 2b Kumar RK. Ali MA. Punniyamurthy T. Org. Lett. 2011; 13: 2102
    • 2c Kim JY. Park SH. Ryu J. Cho SH. Kim SH. Chang S. J. Am. Chem. Soc. 2012; 134: 9110
    • 2d Nadres ET. Daugulis O. J. Am. Chem. Soc. 2012; 134: 7
    • 2e Rouquet G. Chatani N. Angew. Chem. Int. Ed. 2013; 52: 11726
    • 2f Thirunavukkarasu VS. Kozhushkov SI. Ackermann L. Chem. Commun. 2014; 50: 29
    • 2g Wang L. Priebbenow DL. Dong W. Bolm C. Org. Lett. 2014; 16: 2661
    • 2h McDonald SL. Hendrick CE. Wang Q. Angew. Chem. Int. Ed. 2014; 53: 4667
    • 2i Spangler JE. Kobayashi Y. Verma P. Wang D.-H. Yu J.-Q. J. Am. Chem. Soc. 2015; 137: 11876
    • 2j Takamatsu K. Hirano K. Satoh T. Miura M. J. Org. Chem. 2015; 80: 3242
    • 2k Clagg K. Hou H. Weinstein AB. Russell D. Stahl SS. Koenig SG. Org. Lett. 2016; 18: 3586
    • 2l Pradhan S. De PB. Punniyamurthy T. J. Org. Chem. 2017; 82: 4883
    • 2m Henry MC. Mostafa MA. B. Sutherland A. Synthesis 2017; 49: 4586

      For examples, see:
    • 3a Venkatesan AM. Agarwal A. Abe T. Ushirogochi H. Yamamura I. Ado M. Tsuyoshi T. Santos OD. Gu Y. Sum F.-W. Li Z. Francisco G. Lin YI. Peterson PJ. Kumagai T. Yang Y. Weiss WJ. Shlaes DM. Knox JR. Mansour TS. J. Med. Chem. 2006; 49: 4623
    • 3b Christodoulou MS. Colombo F. Passarella D. Leronimo G. Zuco V. Cesare MD. Zunino F. Bioorg. Med. Chem. 2011; 19: 1649
    • 3c Moraski GC. Oliver AG. Markley LD. Cho S. Franzblau SG. Miller MJ. Bioorg. Med. Chem. Lett. 2014; 24: 3493

      For biological properties, see:
    • 4a Anisimova VA. Spasov AA. Kucheryavenko AF. Panchenko TI. Ostrovskii OV. Kosolapov VA. Larionov NP. Pharm. Chem. J. 2002; 36: 528
    • 4b Baviskar AT. Madaan C. Preet R. Mohapatra P. Jain V. Agarwal A. Guchhait SK. Kundu CN. Banerjee UC. Bharatam PV. J. Med. Chem. 2011; 54: 5013
    • 4c Windisch MP. Jo S. Kim H.-Y. Kim S.-H. Kim K. Kong S. Jeong H. Ahn S. No Z. Hwang JY. Eur. J. Med. Chem. 2014; 78: 35
    • 4d Xu B. Peng B. Cai B. Wang S. Wang X. Lv X. Adv. Synth. Catal. 2016; 358: 653
    • 5a Monguchi D. Fujiwara T. Furukawa H. Mori A. Org. Lett. 2009; 11: 1607
    • 5b Wang Q. Schreiber SL. Org. Lett. 2009; 11: 5178
    • 5c Kawano T. Hirano K. Satoh T. Miura M. J. Am. Chem. Soc. 2010; 132: 6900
    • 5d Wang X. Jin Y. Zhao Y. Zhu L. Fu H. Org. Lett. 2012; 14: 452
    • 5e Yu M. Wang B. Zhou P. Jia X. Yuan Y. ChemistrySelect 2016; 1: 6217
    • 5f De PB. Pradhan S. Punniyamurthy T. J. Org. Chem. 2017; 82: 3183

      For examples, see:
    • 6a Cho SH. Kim JY. Lee SY. Chang S. Angew. Chem. Int. Ed. 2009; 48: 9127
    • 6b Kim JY. Cho SH. Joseph J. Chang S. Angew. Chem. Int. Ed. 2010; 49: 9899
    • 6c Wang J. Hou J.-T. Wen J. Zhang J. Yu X.-Q. Chem. Commun. 2011; 47: 3652
    • 6d Li Y. Liu J. Xie Y. Zhang R. Jin K. Wang X. Duan C. Org. Biomol. Chem. 2012; 10: 3715
    • 6e Xu D. Wang W. Miao C. Zhang Q. Xia C. Sun W. Green Chem. 2013; 15: 2975
    • 6f Pal P. Giri AK. Singh H. Ghosh SC. Panda AS. Chem. Asian J. 2014; 9: 2392

      For examples, see:
    • 7a Joseph J. Kim JY. Chang S. Chem. Eur. J. 2011; 17: 8294
    • 7b Lamani M. Prabhu KR. J. Org. Chem. 2011; 76: 7938
    • 7c Froehr T. Sindlinger CP. Kloeckner U. Finkbeiner P. Nachtsheim BJ. Org. Lett. 2011; 13: 3754
    • 7d Wertz S. Kodama S. Studer A. Angew. Chem. Int. Ed. 2011; 50: 11511
    • 7e Wagh YS. Tiwari NJ. Bhanage BM. Tetrahedron Lett. 2013; 54: 1290
    • 7f Wang R. Liu H. Yue L. Zhang X.-K. Tan Q.-Y. Pan R.-L. Tetrahedron Lett. 2014; 55: 2233

      For reviews, see:
    • 8a Liu D. Lei A. Chem. Asian J. 2015; 10: 806
    • 8b Yusubov MS. Zhdankin VV. Resource-Efficient Technol. 2015; 1: 49
    • 8c Yoshimura A. Zhdankin VV. Chem. Rev. 2016; 116: 3328
    • 8d Qin Y. Zhu L. Luo S. Chem. Rev. 2017; 117: 9433

    • For some recent examples, see:
    • 8e Yan Y. Zhang Y. Feng C. Zha Z. Wang Z. Angew. Chem. Int. Ed. 2012; 51: 8077
    • 8f Yan Y. Zhang Y. Zha Z. Wang Z. Org. Lett. 2013; 15: 2274
    • 8g Bharathiraja G. Sakthivel S. Sengoden M. Punniyamurthy T. Org. Lett. 2013; 15: 4996
    • 8h Alla SK. Sadhu P. Punniyamurthy T. J. Org. Chem. 2014; 79: 7502
    • 8i Beukeaw D. Udomsasporn K. Yotphan S. J. Org. Chem. 2015; 80: 3447
    • 8j Liu Y.-W. Badsara SS. Liu Y.-C. Lee C.-F. RSC Adv. 2015; 5: 44299
    • 8k Yan Y. Xu Y. Niu B. Xie H. Liu Y. J. Org. Chem. 2015; 80: 5581
    • 8l He Y. Li J. Luo S. Huang J. Zhu Q. Chem. Commun. 2016; 52: 8444
    • 8m Lv Z. Liu J. Wei W. Wu J. Yu W. Chang J. Adv. Synth. Catal. 2016; 358: 2759
    • 8n Zhang Z. Pi C. Tong H. Cui X. Wu Y. Org. Lett. 2017; 19: 440
    • 8o Yang Z.-Y. Tian T. Du Y.-F. Li S.-Y. Chu C.-C. Chen L.-Y. Li D. Liu J.-Y. Wang B. Chem. Commun. 2017; 53: 8050
    • 8p Yan Y. Li Z. Li H. Cui C. Shi M. Liu Y. Org. Lett. 2017; 19: 6228

      For examples, see:
    • 9a Bolm C. Magnus AS. Hildebrand JP. Org. Lett. 2000; 2: 1173
    • 9b Voica AF. Mendoza A. Gutekunst WR. Fraga JO. Baran PS. Nat. Chem. 2012; 4: 629
    • 9c Wagner A. Ofial AR. J. Org. Chem. 2015; 80: 2848
    • 9d Satheesh V. Sengoden M. Punniyamurthy T. J. Org. Chem. 2016; 81: 9792
    • 9e Bag R. De PB. Pradhan S. Punniyamurthy T. Eur. J. Org. Chem. 2017; 5424
    • 9f De PB. Pradhan S. Banerjee S. Punniyamurthy T. Chem. Commun. 2018; 54: 2494