Synlett 2018; 29(07): 959-963
DOI: 10.1055/s-0036-1591535
letter
© Georg Thieme Verlag Stuttgart · New York

Practical Synthesis of Functionalized Chromeno[3,4-c]pyridine Derivatives via a CuCl2-Catalyzed Tandem Reaction of the Blaise Reaction Intermediates and 3-Cyanocoumarins

Yangyang Fan
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chenzhiwei@zjut.edu.cn   Email: lijianjun@zjut.edu.cn
,
Lei Zheng
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chenzhiwei@zjut.edu.cn   Email: lijianjun@zjut.edu.cn
,
Zhaohai Yang
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chenzhiwei@zjut.edu.cn   Email: lijianjun@zjut.edu.cn
,
Jian-Jun Li*
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chenzhiwei@zjut.edu.cn   Email: lijianjun@zjut.edu.cn
b   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
,
Zhiwei Chen*
a   College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China   Email: chenzhiwei@zjut.edu.cn   Email: lijianjun@zjut.edu.cn
b   Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
› Author Affiliations
We are grateful for the National Natural Science Foundation of China (No. 21676253 and No. 21776254) for financial support. Cooperation from the colleagues analytical research and development is highly appreciated.
Further Information

Publication History

Received: 03 December 2017

Accepted after revision: 01 January 2018

Publication Date:
02 February 2018 (online)


Abstract

This work discloses a novel and efficient protocol for the construction of functionalized chromeno[3,4-c]pyridine derivatives from the Blaise reaction intermediates and 3-cyanocoumarins through a CuCl2-catalyzed sequential Michael addition/intramolecular cyclization/oxidative aromatization reaction. This new method shows the advantages of mild reaction conditions, easy workup, nonchromatographic purification technique, good functional group tolerance, and moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Murray RD. Nat. Prod. Rep. 1995; 6: 591
    • 1b Estévez-Braun A. González AG. Nat. Prod. Rep. 1997; 14: 465
    • 1c O'Kennedy R. Thornes RD. J. Steroid Biochem. 1997; 64: 223
    • 1d Borges F. Roleira F. Milhazes N. Santana L. Uriarte E. Curr. Med. Chem. 2005; 12: 887
    • 1e Medina FG. Marrero JG. Macíasalonso M. González MC. Córdovaguerrero I. Teissier García AG. Oseguedarobles S. Nat. Prod. Rep. 2015; 32: 1472
    • 2a Santana L. Uriarte VL. Gia O. Bioorg. Med. Chem. 2000; 10: 135
    • 2b Liu MM. Chen XY. Huang YQ. Feng P. Guo YL. Yang G. Chen Y. J. Med. Chem. 2014; 57: 9343
    • 2c Bisi A. Cappadone C. Rampa A. Farruggia G. Sargenti A. Belluti F. Di Martino RM. C. Malucelli E. Meluzzi A. Iotti S. Gobbi S. Eur. J. Med. Chem. 2017; 127: 577
    • 2d Sun M. Liu C. Li J. Bioorg. Med. Chem. 2017; 27: 4578
    • 3a Li B. Pai R. Di M. Aiello D. Barnes MH. Butler MM. Tashjian TF. Peet NP. Bowlin TL. Moir DT. J. Med. Chem. 2012; 55: 10896
    • 3b Frolova LV. Malik I. Uglinskii PY. Rogelj S. Kornienko A. Magedov IV. Tetrahedron Lett. 2011; 52: 6643
  • 4 Sardari S. Mori Y. Horita K. Micetich RG. Nishibe S. Daneshtalab M. Bioorg. Med. Chem. 1999; 7: 1933
  • 5 Xie L. Takeuchi Y. Cosentino LM. Lee KH. J. Med. Chem. 1999; 42: 2662
    • 6a Hamdi N. Puerta MC. Valerga P. Eur. J. Med. Chem. 2008; 43: 2541
    • 6b Roussaki M. Kontogiorgis CA. Hadjipavloulitina D. Hamilakis S. Detsi A. Bioorg. Med. Chem. 2010; 41: 3889
    • 7a Hassan MZ. Osman H. Ali MA. Ahsan M. Eur. J. Med. Chem. 2016; 123: 236
    • 7b Neyts J. Clercq ED. Singha R. Chang YH. Das AR. Chakraborty SK. Hong SC. Tsay SC. Hsu MH. Hwu JR. J. Med. Chem. 2009; 52: 1486
    • 8a Houghton PJ. Hairong Y. Planta Med. 1987; 53: 262
    • 8b Macklin TK. Reed MA. Snieckus V. Eur. J. Org. Chem. 2008; 1507
    • 8c Kelly TR. Min HK. J. Org. Chem. 2002; 57: 1593
  • 9 Unangst PC. Capiris T. Connor DT. Heffner TG. Mackenzie RG. Miller SR. And TA. P. Wise LD. J. Med. Chem. 1997; 40: 2688
  • 10 Houghton PJ. Woldemariam TZ. Khan AI. Burke A. Mahmood N. Antivir. Res. 1994; 25: 235
    • 11a Sakurai A. Midorikawa H. Hashimoto Y. Bull. Chem. Soc. Jpn. 1970; 43: 2925
    • 11b Sakurai A. Midorikawa H. Hashimoto Y. Bull. Chem. Soc. Jpn. 1971; 44: 1677
    • 11c Rangnekar DW. Dhamnaskar SV. J. Heterocycl. Chem. 1988; 25: 1767
  • 12 Iaroshenko VO. Erben F. Mkrtchyan S. Hakobyan A. Vilches-Herrera M. Dudkin S. Bunescu A. Villinger A. Ya Sosnovskikh V. Langer P. Tetrahedron 2011; 67: 7946
  • 13 Xiao J. Chen Y. Zhu S. Wang L. Xu L. Wei H. Adv. Synth. Catal. 2014; 356: 1835
  • 14 Kibou Z. Villemin D. Lohier JF. Cheikh N. Bar N. Choukchou-Braham N. Tetrahedron 2016; 72: 1653
    • 15a Parsons PJ. And CS. P. Shell AJ. Chem. Rev. 1996; 96: 195
    • 15b Nicolaou KC. Chen JS. Chem. Soc. Rev. 2009; 38: 2993
    • 15c Nicolaou KC. Edmonds DJ. Bulger PG. Angew. Chem. Int. Ed. 2006; 45: 7134
    • 15d Grondal C. Jeanty M. Enders D. Nat. Chem. 2010; 41: 167
  • 16 Kim JH. Ko YO. Bouffard J. Lee S.-G. Chem. Soc. Rev. 2015; 44: 2489
    • 17a Chun YS. Lee JH. Kim JH. Ko YO. Lee S.-G. Org. Lett. 2011; 13: 6390
    • 17b Yu SC. Kim JH. Lee S.-G. Org. Lett. 2011; 13: 1350
    • 17c Yu SC. Ju HK. Choi SY. Ko YO. Lee S.-G. Org. Lett. 2012; 14: 6358
    • 17d Chun YS. Xuan Z. Kim JH. Lee S.-G. Org. Lett. 2013; 15: 3162
    • 17e Ryu KY. Ko YO. Hong JY. Hong J. Shin H. Lee S.-G. J. Org. Chem. 2009; 74: 7556
    • 17f Kim JH. Ko YO. Bouffard J. Lee S.-G. Chem. Soc. Rev. 2015; 44: 2489
    • 17g Kim JH. Chun YS. Shin H. Lee S.-G. Synthesis 2012; 44: 1809
  • 18 Chen Z. Dai Z. Zhu Z. Yang X. Tetrahedron Lett. 2017; 58: 1258
  • 19 Chen Z. Chen H. Yang X. Chang X. Synlett 2017; 28: 1463
    • 20a Chen Z. Yang X. Su W. Tetrahedron Lett. 2015; 56: 2476
    • 20b Chen Z. Zhu Q. Su W. Tetrahedron Lett. 2011; 52: 2601
    • 20c Chen Z. Bi J. Su W. Chin. J. Chem. 2013; 31: 507
    • 20d Chen Z. Hu L. Peng F. Synlett 2016; 27: 1888
    • 20e Yang X. Chen Z. Zhong W. Eur. J. Org. Chem. 2017; 2258
  • 21 Xuan Z. Rathwell K. Lee S.-G. Asian J. Org. Chem. 2014; 3: 1108
  • 22 General Procedure for the One-Pot Synthesis of 3aTo a stirred suspension of commercial zinc dust (520 mg, 8.0 mmol) was added methanesulfonic acid (2.5 mg) in anhydrous THF (10 mL). After 10 min of reflux, 4-chlorobenzonitrile (548 mg, 4.0 mmol) was added all at once. While maintaining reflux temperature, tert-butyl bromoacetate (1.17 g, 6.0 mmol) was added over 1 h with a syringe pump, and the reaction mixture was further heated at reflux for 1 h (all nitrile was converted into intermediate Aa, monitored by TLC). To the reaction mixture was added CuCl2 (53.6 mg, 0.4 mmol) and a solution of 3-cyanocoumarin (342 mg, 2.0 mmol) in THF (3.0 mL), the reaction mixture was stirred at reflux temperature under dry air. After the reaction was completed (monitored by TLC), the solution was quenched with saturated aqueous NH4Cl (10 mL), then neutralized with saturated aqueous Na2CO3 solution (15 mL), and extracted with EtOAc (3 × 50 mL). The combined organic layer was dried with anhydrous Na2SO4, filtered, and concentrated under reduced pressure. The residue was washed with methanol or ethanol to give the pure product 3a (658 mg, 78%); pale yellow powder, mp 269–270 °C. 1H NMR (600 MHz, DMSO-d 6): δ = 8.30 (s, 1 H), 8.16 (s, 1 H), 7.96 (dd, J = 8.4, 1.2 Hz, 1 H), 7.72–7.67 (m, 1 H), 7.60–7.55 (m, 2 H), 7.50–7.44 (m, 3 H), 7.39–7.35 (m, 1 H), 1.25 (s, 9 H). 13C NMR (150 MHz, DMSO-d 6): δ = 168.10, 161.63, 161.11, 159.89, 152.27, 141.19, 138.33, 134.15, 133.49, 130.71, 128.43, 126.28, 124.59, 118.23, 115.87, 114.58, 96.82, 83.48, 27.41. MS (ESI): m/z = 423 [M – H]+. HRMS-ESI: m/z calcd for C23H20ClN2O4 [M – H]+: 423.1106; found: 423.1083.