Synthesis 2018; 50(07): 1482-1492
DOI: 10.1055/s-0036-1591021
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of Functionalized 4H-Chromenes via an Fe(OTf)3-Catalyzed Cyclization Reaction of Phenols and Ketones

Kai Deng
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China
,
Qi-Yong Huai
b   Marine College, Shandong University, Weihai 264209, P. R. of China
,
Hui-Jing Li*
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China
,
Jun-Hu Wang
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China
,
Hui-Ru Yang
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China
,
Ying Liu
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China
,
a   School of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. of China
c   Beijing National Laboratory for Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. of China   Email: ycwu@iccas.ac.cn
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (21672046, 21372054), the Fundamental Research Funds for the Central Universities (HIT.NSRIF.201701, 201708), and the Natural Science Foundation of Shandong (2015ZRA10064).
Further Information

Publication History

Received: 20 November 2017

Accepted: 10 December 2017

Publication Date:
11 January 2018 (online)


Abstract

The iron(III) triflate catalyzed cyclization reaction of phenols and ketones is described; the reaction provides a direct approach to 4H-chromene derivatives. 4H-Chromene is an important structural fragment of many pharmaceuticals, natural products, and functional materials. The 4H-chromene synthetic protocol possesses many advantages, such as using readily available and inexpensive starting materials and a non-toxic catalyst, high selectivity, and operational simplicity, which offer­ attractive industrial prospects from the point of view of green and sustainable chemistry.

Supporting Information

 
  • References

    • 1a Hatakeyama S. Ochi N. Numata H. Takano S. Chem. Commun. 1998; 1202
    • 1b Gonzalez R. Martin N. Seoane C. Marco JL. Albert A. Cano FH. Tetrahedron Lett. 1992; 33: 3809
    • 1c Wu YC. Liu L. Liu YL. Wang D. Chen YJ. J. Org. Chem. 2007; 72: 9383
    • 1d Jeso V. Nicolaou KC. Tetrahedron Lett. 2009; 50: 1161
    • 1e Wu YC. Li HJ. Liu L. Liu Z. Wang D. Chen YJ. Org. Biomol. Chem. 2011; 9: 2868
    • 1f Wu YC. Li HJ. Liu L. Demoulin N. Liu Z. Wang D. Chen YJ. Adv. Synth. Catal. 2011; 353: 907
    • 1g Yao C. Jiang B. Li T. Qin B. Feng X. Zhang H. Wang C. Tu S. Bioorg. Med. Chem. Lett. 2011; 21: 599
    • 1h Wu YC. Li HJ. Liu L. Demoulin N. Liu Z. Wang D. Chen YJ. Synlett 2011; 1573
    • 1i Li H.-J. Wang J.-L. Wang R. Luo D.-H. Wu Y.-C. J. Chem. 2013; DOI: Article ID 106908;. http://www.hindawi.com/journals/jchem/
    • 1j Li HJ. Luo DH. Wu QX. Dai CY. Shen ZL. Wu YC. Chin. Chem. Lett. 2014; 25: 1235
    • 1k Costa M. Dias TA. Brito A. Proença F. Eur. J. Med. Chem. 2016; 123: 487
  • 2 Aryapour H. Mahdavi M. Mohebbi SR. Zali MR. Foroumadi A. Arch. Pharmacal Res. 2012; 35: 1573
  • 3 Xu ZQ. Pupek K. Suling WJ. Enache L. Flavin MT. Bioorg. Med. Chem. 2006; 14: 4610
  • 4 Martínez-Grau A. Marco JL. Bioorg. Med. Chem. Lett. 1997; 7: 3165
  • 5 Sangani CB. Shah NM. Patel MP. Patel RG. Med. Chem. Res. 2013; 22: 3831
  • 6 Kamdar NR. Haveliwala DD. Mistry PT. Patel SK. Med. Chem. Res. 2011; 20: 854
  • 7 Narender T. Shweta Gupta S. Bioorg. Med. Chem. Lett. 2004; 14: 3913
  • 8 Symeonidis T. Chamilos M. Hadjipavlou-Litina DJ. Kallitsakis M. Litinas KE. Bioorg. Med. Chem. Lett. 2009; 19: 1139
  • 9 Das SG. Hermanson DL. Bleeker N. Lowman X. Li Y. Kelekar A. Xing C. ACS Chem. Biol. 2013; 8: 327
    • 10a Appel B. Saleh NN. R. Langer P. Chem.–Eur. J. 2006; 12: 1221
    • 10b Nising CF. Ohnemuller UK. Brase S. Angew. Chem. Int. Ed. 2006; 45: 307
    • 11a Corey EJ. Wu LI. J. Am. Chem. Soc. 1993; 115: 9327
    • 11b Salni D. Sargent MV. Skelton BW. Soediro I. Sutisna M. White AH. Yulinah E. Aust. J. Chem. 2002; 55: 229
    • 11c Shaheen F. Ahmad M. Nahar Khan S. Samreen Hussain S. Anjum S. Tashkhodjaev B. Choudhary MI. Eur. J. Org. Chem. 2006; 2371
    • 11d Wang JL. Liu D. Zhang ZJ. Shan S. Han X. Srinivasula SM. Huang Z. Proc. Natl. Acad. Sci. U. S. A. 2000; 97: 7124

      For selected examples see:
    • 12a Engler TA. LaTessa KO. Iyengar R. Chai W. Agrios K. Bioorg. Med. Chem. 1996; 4: 1755
    • 12b Elomri A. Mitaku S. Michel S. Skaltsounis AL. Tillequin F. Koch M. Rolland Y. J. Med. Chem. 1996; 39: 4762
    • 12c Kidwai M. Saxena SM. Khan KR. Thukral SS. Bioorg. Med. Chem. Lett. 2005; 15: 4295
    • 12d Tahtaoui C. Demailly A. Guidemann C. Joyeux C. Schneider P. J. Org. Chem. 2010; 75: 3781
    • 13a Mukai K. Okabe K. Hosose H. J. Org. Chem. 1989; 54: 557
    • 13b Jankun J. Selman SH. Swiercz R. Nature (London) 1997; 387: 561
    • 14a Paramonov S. Delbaere S. Fedorova O. Fedorov Y. Lokshin V. Samat A. Vermeersch G. J. Photochem. Photobiol. 2010; 209: 111
    • 14b Evans RA. Such GK. Aust. J. Chem. 2005; 58: 825
  • 15 Zacheis D. Dhar A. Lu S. Madler MM. Klucik J. Brown CW. Berlin KD. J. Med. Chem. 1999; 42: 4434
  • 16 Rao VK. Kaswan P. Parang K. Kumar A. Org. Biomol. Chem. 2015; 13: 11072
  • 17 Fan J. Wang Z. Chem. Commun. 2008; 5381
  • 18 Azizi N. Mariami M. Edrisi M. Dyes Pigm. 2004; 100: 215
  • 19 Aoyama T. Yamamoto T. Miyota S. Hayakawa M. Takido T. Kodomari M. Synlett 2014; 25: 1571
  • 20 Xue WJ. Li Q. Gao FF. Zhu YP. Wang JG. Zhang W. Wu AX. ACS Comb. Sci. 2012; 14: 478
  • 21 Li HJ. Deng K. Luo DH. Liu DH. Wang JL. Lin CH. Wu YC. RSC Adv. 2014; 4: 26316
    • 22a Corma A. Garcia H. Chem. Rev. 2003; 103: 4307
    • 22b Coulombel L. Grau F. Weiwer M. Favier I. Chaminade X. Heumann A. Dunach E. Chem. Biodivers. 2008; 5: 1070
    • 22c Landa A. Richter B. Johansen RL. Minkkilä A. Jørgensen KA. J. Org. Chem. 2007; 72: 240
    • 22d Hahn C. Chem.–Eur. J. 2004; 10: 5888
    • 22e Bothwell JM. Krabbe SW. Mohan RS. Chem. Soc. Rev. 2011; 40: 4649
  • 23 Liu Y. Qian J. Lou S. Zhu J. Xu Z. J. Org. Chem. 2010; 75: 1309
    • 24a Bolm C. Legros J. Le Paih J. Zani L. Chem. Rev. 2004; 104: 6217
    • 24b Correa A. Mancheño OG. Bolm C. Chem. Soc. Rev. 2008; 37: 1108
    • 24c Bauer EB. Curr. Org. Chem. 2008; 12: 1341
    • 24d Sun C.-L. Li B.-J. Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 24e Gaillard S. Renaud JL. ChemSusChem 2008; 1: 505
    • 24f Junge K. Schröder K. Beller M. Chem. Commun. 2011; 47: 4849
    • 25a Alves MH. M. E. Nascimento GA. Cabrera MP. da Cruz Silvério SI. Nobre C. Teixeira JA. de Carvalho LB. Food Chem. 2017; 226: 75
    • 25b Valko M. Morris H. Cronin MT. D. Curr. Med. Chem. 2005; 12: 1161
    • 25c Hentze MW. Muckenthaler MU. Andrews NC. Cell 2004; 117: 285
    • 25d Lill R. Nature (London) 2009; 460: 831
    • 25e Rosenzweig AC. Brandstetter H. Whittington DA. Nordlund P. Lippard SJ. Frederick CA. Proteins: Struct., Funct., Genet. 1997; 29: 141
    • 26a Li HJ. Wu YY. Wu QX. Wang R. Dai CY. Shen ZL. Xie CL. Wu YC. Org. Biomol. Chem. 2014; 12: 3100
    • 26b Wu QX. Li HJ. Wang HS. Zhang ZG. Wang CC. Wu YC. Synlett 2015; 26: 243
    • 26c Li HJ. Wang R. Gao J. Wang YY. Luo DH. Wu YC. Adv. Synth. Catal. 2015; 357: 1393
    • 26d Li HJ. Wang CC. Zhu S. Dai CY. Wu YC. Adv. Synth. Catal. 2015; 357: 583
    • 26e Wang Q. Wang M. Li HJ. Zhu S. Liu Y. Wu YC. Synthesis 2016; 48: 3985
    • 26f Ji YZ. Wang M. Li HJ. Liu Y. Wu YC. Eur. J. Org. Chem. 2016; 4077
    • 26g Wang HS. Li HJ. Wang JL. Wu YC. Green Chem. 2017; 19: 2140
    • 26h Wang JL. Li HJ. Wang HS. Wu YC. Org. Lett. 2017; 19: 3811
  • 27 Zhao Y. Li J. Li C. Yin K. Ye D. Jia X. Green Chem. 2010; 12: 1370
  • 28 Deng K. Huai QY. Shen ZL. Li HJ. Liu C. Wu YC. Org. Lett. 2015; 17: 1473