Synthesis 2017; 49(20): 4711-4716
DOI: 10.1055/s-0036-1589067
paper
© Georg Thieme Verlag Stuttgart · New York

Synthesis of (±)-γ-Lycorane by Using an Intramolecular Friedel–Crafts Reaction

Bao Nguyen Do Doan
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: roderick@ntu.edu.sg
,
Xin Yi Tan
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: roderick@ntu.edu.sg
,
Chin May Ang
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: roderick@ntu.edu.sg
,
Roderick W. Bates*
Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore   Email: roderick@ntu.edu.sg
› Author Affiliations
We thank the Agency for Science Technology and Research (A-Star) for financial support of this work (PSF grant number 1321202095). B.N.D.D. thanks the URECA programme of NTU for support.
Further Information

Publication History

Received: 29 April 2017

Accepted after revision: 26 May 2017

Publication Date:
20 July 2017 (online)


Abstract

A total synthesis of γ-lycorane has been achieved by employing N-tosylpyrrole as a key building block. The synthesis employs both an intermolecular and an intramolecular Friedel–Crafts reaction, as well as a completely diastereoselective hydrogenation of a late-stage pyrrole intermediate.

Supporting Information

 
  • References


    • For selected syntheses, see:
    • 1a Liu D. Ai L. Li F. Zhao A. Chen J. Zhang H. Liu J. Org. Biomol. Chem. 2014; 12: 3191
    • 1b Huntley RJ. Funk RJ. Tetrahedron Lett. 2011; 52: 6671
    • 1c Tomooka K. Suzuki M. Uehara K. Shimada M. Akiyama T. Synlett 2008; 2518
    • 1d El Bialy SA. A. Nat. Prod. Res. 2008; 22: 1176
    • 1e Chapsal BD. Ojima I. Org. Lett. 2006; 8: 1395
    • 1f Fujioka H. Murai K. Ohba Y. Hirose H. Kita Y. Chem. Commun. 2006; 832
    • 1g Dong L. Xu Y.-J. Cun L.-F. Cui X. Mi A.-Q. Jiang Y.-Z. Gong L.-Z. Org. Lett. 2005; 7: 4285
    • 1h Gao S. Tu YQ. Song Z. Wang A. Fan X. Jiang Y. J. Org. Chem. 2005; 70: 6523
    • 1i Yasuhara T. Osafune E. Nishimura K. Yamashita M. Yamada K.-i. Muraoka O. Tomioka K. Tetrahedron Lett. 2004; 45: 3043
    • 1j Shao Z. Chen J. Huang R. Wang C. Li H. Zhang H. Synlett 2003; 2228
    • 1k Padwa A. Brodney MA. Lynch SM. J. Org. Chem. 2001; 66: 1716
    • 1l Banwell MG. Harvey JE. Hockless DC. R. J. Org. Chem. 2000; 65: 4241
    • 1m Hoang-Cong X. Quiclet-Sire B. Zard SZ. Tetrahedron Lett. 1999; 40: 2125
    • 1n Cassayre J. Zard SZ. Synlett 1999; 501
    • 1o Cossy J. Tresnard L. Pardo DG. Eur. J. Org. Chem. 1999; 1925
    • 1p Cossy J. Tresnard L. Pardo DG. Tetrahedron Lett. 1999; 40: 1125
    • 1q Ikeda M. Ohtani S. Sato T. Ishibashi H. Synthesis 1998; 1803
    • 1r Yoshizaki H. Satoh H. Sato Y. Nukui S. Shibasaki M. Mori M. J. Org. Chem. 1995; 60: 2016
    • 1s Angle SR. Boyce JP. Tetrahedron Lett. 1995; 36: 6185
    • 1t Banwell MG. Wu AW. J. Chem. Soc., Perkin Trans. 1 1994; 2671
    • 1u Grotjahn DB. Vollhardt KP. C. Synthesis 1993; 579
    • 1v For a review of the synthesis of amaryllidaceae alkaloids, see: Ghave M. Froese J. Pour M. Hudlicky T. Angew. Chem. Int. Ed. 2016; 55: 5642

      For a review, see:
    • 2a Jefford CW. Curr. Org. Chem. 2000; 4: 205
    • 2b For an example from this laboratory, see: Bates RW. Sridhar S. J. Org. Chem. 2011; 76: 5026
  • 3 For a review of achieving β-substitution in pyrroles, see: Anderson HJ. Loader CE. Synthesis 1985; 353
    • 4a Xu RX. Anderson HJ. Gogan NJ. Loader CE. McDonald R. Tetrahedron Lett. 1981; 22: 4899
    • 4b Rokach J. Hamel P. Kakushima M. Tetrahedron Lett. 1981; 22: 4901
    • 4c Kakushima M. Hamel P. Frenette R. Rokach J. J. Org. Chem. 1983; 48: 3214
    • 4d Settambolo R. Lazzaroni R. Messeri T. Mazzetti M. Salvadori P. J. Org. Chem. 1993; 58: 7889
  • 5 From 2,5-dimethoxytetrahydrofuran by the Clausson-Kaas method: Elming N. Clausson-Kaas N. Acta Chem. Scand. 1952; 6: 867
  • 6 Pétrier C. Luche J.-L. J. Org. Chem. 1985; 50: 910
  • 7 Samojłowitz C. Niebiek M. Pazio A. Makal A. Woźniak K. Poater A. Cavallo L. Wójcik J. Zdanowski K. Grela K. Chem. Eur. J. 2011; 17: 12981
  • 8 Haworth RD. J. Chem. Soc. 1932; 1125
    • 9a Practical Synthetic Organic Chemistry . Caron S. J. Wiley & Sons; New York: 2009
    • 9b Yamamura S. Toda M. Hirata Y. Org. Synth. 1973; 53: 86
    • 9c Yamamura S. Toda M. Hirata Y. Chem. Commun. 1968; 1494
  • 10 Hamze A. Giraud A. Messaoudi S. Provot O. Peyrat J.-F. Bignon J. Liu J.-M. Wdzieczak-Bakala J. Thoret S. Dubois J. Brion J.-D. Alami M. ChemMedChem 2009; 4: 1912
  • 11 Kobayashi S. Eur. J. Org. Chem. 1999; 15
  • 12 Jolicoeur B. Chapman EE. Thompson A. Lubell WD. Tetrahedron 2006; 62: 11531
  • 13 For the catalytic hydrogenation of pyrroles, see: Hydrogenation Methods . Rylander PN. Academic Press; London: 1985: 134
  • 14 Kray LR. Reinecke MG. J. Org. Chem. 1967; 32: 225
  • 15 It is essential that all traces of thiol from the detosylation step are removed prior to hydrogenation.
  • 16 To our surprise, attempted hydrogenation of elimination product 16 under the same conditions yielded only a complex mixture.
  • 17 You HT. Grosse AC. Howard JK. Hyland CJ. T. Just J. Molesworth PP. Smith JA. Org. Biomol. Chem. 2011; 9: 3948
  • 18 CCDC 1534656 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
  • 19 Riflade B. Lachkar D. Oble J. Li J. Thorimbert S. Hasenkopf B. Lacote E. Org. Lett. 2014; 16: 3860
  • 20 Wu Z. Li Y. Cai Y. Yuan J. Yuan C. Bioorg. Med. Chem. Lett. 2013; 23: 4903