Synthesis 2017; 49(16): 3662-3669
DOI: 10.1055/s-0036-1589032
paper
© Georg Thieme Verlag Stuttgart · New York

Palladium-Catalyzed Oxidation-Hydroxylation and Oxidation-Methoxylation­ of N-Boc Indoles for the Synthesis of 3-Oxoindolines

Xiao-Yu Zhou*
a   Department of Chemistry and Chemical Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Xia Chen*
a   Department of Chemistry and Chemical Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Liang-Guang Wang
b   College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, P. R. of China
,
Dan Yang
a   Department of Chemistry and Chemical Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
,
Zhi Li
a   Department of Chemistry and Chemical Engineering, Liupanshui Normal University, Liupanshui, 553004, P. R. of China   Email: zhouxiaoyu20062006@126.com
› Author Affiliations
This work was supported by the Union Foundation of Science and Technology Department of Guizhou Province (Grant No. qiankehe LH zi [2015] number 7614) and the High-Level Talents Start-up Foundation of Liupanshui Normal University (Grant No. LPSSYKYJJ201501).
Further Information

Publication History

Received: 22 February 2017

Accepted after revision: 20 April 2014

Publication Date:
18 May 2017 (online)


Abstract

The palladium-catalyzed oxidation-hydroxylation and oxidation-methoxylation of N-Boc indoles for the synthesis of tert-butyl 2-hydroxy(methoxy)-3-oxoindoline-1-carboxylates and their derivatives is developed. The process occurs readily using PdCl2 as the catalyst and acetonitrile as the solvent to afford 3-oxoindolines in moderate to high yields. A mechanism for this Pd-catalyzed oxidation-hydroxylation and oxidation-methoxylation of N-Boc indoles is proposed.

Supporting Information

 
  • References

    • 1a Chen I.-S. Chen H.-F. Cheng M.-J. Chang Y.-L. Teng C.-M. Tsutomu I. Chen J.-J. Tsai I.-L. J. Nat. Prod. 2001; 64: 1143
    • 1b Hibino S. Choshi T. Nat. Prod. Rep. 2001; 18: 66
    • 1c Somei M. Yamada F. Nat. Prod. Rep. 2003; 20: 216
    • 1d Kawasaki T. Higuchi K. Nat. Prod. Rep. 2005; 22: 761
    • 1e O’Connor SE. Maresh JJ. Nat. Prod. Rep. 2006; 23: 532
    • 1f Higuchi K. Kawasaki T. Nat. Prod. Rep. 2007; 24: 843
    • 1g Teichert A. Schmidt J. Porzel A. Arnold N. Wessjohann L. J. Nat. Prod. 2008; 71: 1092
    • 1h Höfle G. Böhlendorf B. Fecker T. Sasse F. Kunze B. J. Nat. Prod. 2008; 71: 1967
    • 1i Ishikura M. Yamada K. Nat. Prod. Rep. 2009; 26: 803
    • 1j Li S.-M. Nat. Prod. Rep. 2010; 27: 57
    • 1k Ishikura M. Yamada K. Abe T. Nat. Prod. Rep. 2010; 27: 1630
    • 2a Bur SK. Padwa A. Chem. Rev. 2004; 104: 2401
    • 2b Mąkosza M. Wojciechowski K. Chem. Rev. 2004; 104: 2631
    • 2c Busto E. Gotor-Fernández V. Gotor V. Chem. Rev. 2011; 111: 3998
    • 2d Zhang H. Hu R.-B. Liu N. Li S.-X. Yang S.-D. Org. Lett. 2016; 18: 28
    • 2e Morimoto N. Morioku K. Suzuki H. Takeuchi Y. Nishina Y. Org. Lett. 2016; 18: 2020
    • 2f Petrone DA. Kondo M. Zeidan N. Lautens M. Chem. Eur. J. 2016; 22: 5684
    • 3a Malapel-Andrieu B. Mérour J.-Y. Tetrahedron 1998; 54: 11095
    • 3b Kawasaki T. Enoki H. Matsumura K. Ohyama M. Inagawa M. Sakamoto M. Org. Lett. 2000; 2: 3027
    • 3c Zhang P. Bierer DE. J. Nat. Prod. 2000; 63: 643
    • 3d Liu Y. McWhorter WW. Jr. J. Am. Soc. Chem. 2003; 125: 4240
    • 3e Liu Y. McWhorter WW. Jr. J. Org. Chem. 2003; 68: 2618
    • 3f Grougnet R. Magiatis P. Fokialakis N. Mitaku S. Skaltsounis A.-L. Tillequin F. Sévenet T. Litaudon M. J. Nat. Prod. 2005; 68: 1083
    • 3g Wyrembak PN. Hamilton AD. J. Am. Soc. Chem. 2009; 131: 4566
    • 3h Matsumoto M. Samata D. Akazome M. Ogura K. Tetrahedron Lett. 2009; 50: 111
  • 4 Kiraz CI. A. Emge TJ. Jimenaz LS. J. Org. Chem. 2004; 69: 2200
  • 5 Desarbre E. Savelon L. Cornec O. Mérour JY. Tetrahedron 1996; 52: 2983
    • 6a Feigelson GB. Danishefsky SJ. J. Org. Chem. 1988; 53: 3392
    • 6b Gharpure SJ. Sathiyanarayanan AM. Chem. Commun. 2011; 47: 3625
    • 7a Zhang X. Foote CS. J. Am. Chem. Soc. 1993; 115: 8867
    • 7b Colandrea V. Rajaraman JS. Jimenez LS. Org. Lett. 2003; 5: 785
  • 8 Zhang J.-L. Che C.-M. Chem. Eur. J. 2005; 11: 3899
  • 9 Guchhait SK. Chaudhary V. Rana VA. Priyadarshani G. Kandekar S. Kashyap M. Org. Lett. 2016; 18: 1534
  • 10 Zhou X.-Y. Chen X. Wang L.-G. Synlett 2016; 27: 2742
    • 11a Sigman MS. Jensen DR. Acc. Chem. Res. 2006; 39: 221
    • 11b Sigman MS. Werner EW. Acc. Chem. Res. 2012; 45: 874
    • 11c Muzart J. Tetrahedron 2007; 63: 7505
    • 12a Mimoun H. Charpentier R. Mitschler A. Fischer J. Weiss R. J. Am. Chem. Soc. 1980; 102: 1047
    • 12b Roussel M. Mimoun H. J. Org. Chem. 1980; 45: 5387

      For Sigman’s work on Pd-catalyzed Wacker oxidation, see:
    • 13a Cornell CN. Sigman MS. J. Am. Chem. Soc. 2005; 127: 2796
    • 13b Zhang Y. Sigman MS. J. Am. Chem. Soc. 2007; 129: 3076
    • 13c Michel BW. Camelio AM. Cornell CN. Sigman MS. J. Am. Chem. Soc. 2009; 131: 6076
    • 13d Jensen KH. Pathak TP. Zhang Y. Sigman MS. J. Am. Chem. Soc. 2009; 131: 17074
    • 13e Anderson BJ. Keith JA. Sigman MS. J. Am. Chem. Soc. 2010; 132: 11872
    • 13f Jensen KH. Webb JD. Sigman MS. J. Am. Chem. Soc. 2010; 132: 17471
    • 13g Michel BW. McCombs JR. Winkler A. Sigman MS. Angew. Chem. Int. Ed. 2010; 49: 7312
    • 13h Michel BW. Steffens LD. Sigman MS. J. Am. Chem. Soc. 2011; 133: 8317
  • 14 Weiner B. Baeza A. Jerphagnon B. Feringa BL. J. Am. Chem. Soc. 2009; 131: 9473
    • 15a Mitsudome T. Umetani T. Nosaka N. Mori K. Mizugaki T. Ebitani K. Kaneda K. Angew. Chem. Int. Ed. 2006; 45: 481
    • 15b Mitsudome T. Mizumoto K. Mizugaki T. Jitsukawa K. Kaneda K. Angew. Chem. Int. Ed. 2010; 49: 1238