Synthesis 2017; 49(13): 2907-2912
DOI: 10.1055/s-0036-1588987
special topic
© Georg Thieme Verlag Stuttgart · New York

Oxidative Cyclization of β,γ-Unsaturated Carboxylic Acids Using Hypervalent Iodine Reagents: An Efficient Synthesis of 4-Substituted Furan-2-ones

Kensuke Kiyokawa*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
,
Kenta Takemoto
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
,
Shunsuke Yahata
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
,
Takumi Kojima
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
,
Satoshi Minakata*
Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Yamadaoka 2-1, Suita, Osaka 565-0871, Japan   Email: kiyokawa@chem.eng.osaka-u.ac.jp   Email: minakata@chem.eng.osaka-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 16 February 2017

Accepted after revision: 09 March 2017

Publication Date:
30 March 2017 (online)


Published as part of the Special Topic Modern Strategies with Iodine in Synthesis

Abstract

The oxidative cyclization of β-substituted β,γ-unsaturated carboxylic acids using a hypervalent iodine reagent to provide 4-substituted furan-2-one products, is reported. In this cyclization, the use of a highly electrophilic PhI(OTf)2, which is in situ prepared from PhI(OAc)2 and Me3SiOTf, is crucial. Depending on the substitution pattern at the α-position of the substrates, furan-2(5H)-ones or furan-2(3H)-ones are produced. Thus, the present method offers a useful tool for accessing various types of 4-substituted furan-2-ones that are important structural motifs in the field of organic chemistry and medicinal chemistry.

Supporting Information

 
  • References

    • 1a Kupchan SM. Court WA. Dailey RG. Jr. Gilmore CJ. Bryan RF. J. Am. Chem. Soc. 1972; 94: 7194
    • 1b Pelter A. Ward RS. Rao EV. Raju NR. J. Chem. Soc., Perkin Trans. 1 1981; 2491
    • 1c De Guzman FS. Schmitz FJ. J. Nat. Prod. 1990; 53: 926
    • 1d Bezuidenhoudt BC. B. Swanepoel A. Brandt EV. Ferreira D. J. Chem. Soc., Perkin Trans. 1 1990; 2599
    • 1e Miao S. Andersen RJ. J. Org. Chem. 1991; 56: 6275
    • 1f Miles DH. Chittawong V. Lho D.-S. Payne AM. de la Cruz AA. Gomez ED. Weeks JA. Atwood JL. J. Nat. Prod. 1991; 54: 286
    • 1g Nohara T. Kinjo J. Furusawa J. Sakai Y. Inoue M. Shirataki Y. Ishibashi Y. Yokoe I. Komatsu M. Phytochemistry 1993; 33: 1207
    • 1h Cerri A. Mauri P. Mauro M. Melloni P. J. Heterocycl. Chem. 1993; 30: 1581
    • 1i Evidente A. Sparapano L. J. Nat. Prod. 1994; 57: 1720
    • 1j Figadère B. Acc. Chem. Res. 1995; 28: 359
    • 1k Midland SL. Keen NT. Sims JJ. J. Org. Chem. 1995; 60: 1118
    • 1l Honda T. Mizutani H. Kanai K. J. Org. Chem. 1996; 61: 9374
    • 1m Gunasekera SP. McCarthy PJ. Kelly-Borges M. Lobkovsky E. Clardy J. J. Am. Chem. Soc. 1996; 118: 8759
    • 1n Smith CJ. Hettich RL. Jompa J. Tahir A. Buchanan MV. Ireland CM. J. Org. Chem. 1998; 63: 4147
    • 1o Ortega MJ. Zubía E. Ocaña JM. Naranjo S. Salvá J. Tetrahedron 2000; 56: 3963
    • 1p Bellina F. Anselmi C. Viel S. Mannina L. Rossi R. Tetrahedron 2001; 57: 9997
    • 1q Ueda J. Tezuka Y. Banskota AH. Tran QL. Tran QK. Saiki I. Kadota S. J. Nat. Prod. 2003; 66: 1427
    • 1r Braña MF. García ML. López B. de Pascual-Teresa B. Ramos A. Pozuelo JM. Domínguez MT. Org. Biomol. Chem. 2004; 2: 1864
    • 1s Keyzers RA. Davies-Coleman MT. Chem. Soc. Rev. 2005; 34: 355
    • 1t Ohsaki A. Kobayashi Y. Yoneda K. Kishida A. Ishiyama H. J. Nat. Prod. 2007; 70: 2003
    • 1u Zhang H. Conte MM. Huang X.-C. Khalil Z. Capon RJ. Org. Biomol. Chem. 2012; 10: 2656

      For reviews, see:
    • 2a Rao YS. Chem. Rev. 1976; 76: 625
    • 2b Avetisyan AA. Dangyan MT. Russ. Chem. Rev. 1977; 46: 643

    • For selected examples, see:
    • 2c Wu J. Zhu Q. Wang L. Fathi R. Yang Z. J. Org. Chem. 2003; 68: 670
    • 2d Boukouvalas J. Loach RP. J. Org. Chem. 2008; 73: 8109
    • 2e Hyde AM. Buchwald SL. Org. Lett. 2009; 11: 2663
    • 2f Matsuo K. Shindo M. Org. Lett. 2010; 12: 5346
    • 2g Lee D. Newman SG. Taylor MS. Org. Lett. 2009; 11: 5486
    • 2h Cheng J. Chen P. Liu G. Org. Chem. Front. 2014; 1: 289
    • 2i Mao W. Zhu C. Org. Lett. 2015; 17: 5710

      For selected examples, see:
    • 3a Danieli N. Mazur Y. Sondheimer F. J. Am. Chem. Soc. 1962; 84: 875
    • 3b Danieli N. Mazur Y. Sondheimer F. Tetrahedron 1966; 22: 3189
    • 3c Krauser SF. Watterson AC. Jr. J. Org. Chem. 1978; 43: 3400
    • 3d Kagabu S. Shimizu Y. Ito C. Moriya K. Synthesis 1992; 830
    • 3e Renard M. Ghosez LA. Tetrahedron 2001; 57: 2597
    • 3f Bassetti M. D’Annibale A. Fanfoni A. Minissi F. Org. Lett. 2005; 7: 1805
    • 3g Liu Y. Song F. Guo S. J. Am. Chem. Soc. 2006; 128: 11332
    • 3h Tejedor D. Santos-Expośito A. García-Tellado F. Synlett 2006; 1607
    • 3i Alfonsi M. Arcadi A. Chiarini M. Marinelli F. J. Org. Chem. 2007; 72: 9510
    • 3j Li S. Miao B. Yuan W. Ma S. Org. Lett. 2013; 15: 977
    • 4a Kasahara A. Izumi T. Sato K. Maemura M. Hayasaka T. Bull. Chem. Soc. Jpn. 1977; 50: 1899
    • 4b Browne DM. Niyomura O. Wirth T. Org. Lett. 2007; 9: 3169
    • 4c Bajracharya GB. Koranne PS. Nadaf RN. Gabr RK. M. Takenaka K. Takizawa S. Sasai H. Chem. Commun. 2010; 46: 9064
    • 4d Kawamata Y. Hashimoto T. Maruoka K. J. Am. Chem. Soc. 2016; 138: 5206
  • 5 Singh FV. Rehbein J. Wirth T. ChemistryOpen 2012; 1: 245
    • 6a Kiyokawa K. Yahata S. Kojima T. Minakata S. Org. Lett. 2014; 16: 4646

    • For iodine-catalyzed decarboxylative amidation, see:
    • 6b Kiyokawa K. Kojima T. Hishikawa Y. Minakata S. Chem. Eur. J. 2015; 21: 15548
    • 7a Zefirov NS. Safronov SO. Kaznacheev AA. Zhdankin VV. Zh. Org. Khim. 1989; 25: 1807
    • 7b Lutz KE. Thomson RJ. Angew. Chem. Int. Ed. 2011; 50: 4437
    • 7c Farid U. Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
    • 8a Zefirov NS. Zhdankin VV. Dan’kov YV. Koz’min AS. J. Org. Chem. USSR 1984; 20: 401 ; Zh. Org. Khim. 1984, 20, 446
    • 8b Zefirov NS. Zhdankin VV. Dan’kov YV. Sorokin VD. Semerikov VN. Koz’min AS. Caple R. Berglund BA. Tetrahedron Lett. 1986; 27: 3971
  • 9 Upon treatment with TfOH in CH2Cl2, methoxy-substituted substrate 1g completely isomerized into the corresponding α,β-unsaturated carboxylic acid, which decomposed into a complex mixture under the standard cyclization conditions.
  • 10 Izquierdo S. Essafi S. del Rosal I. Vidossich P. Pleixats R. Vallribera A. Ujaque G. Lledós A. Shafir A. J. Am. Chem. Soc. 2016; 138: 12747
  • 11 Gronnier C. Kramer S. Odabachian Y. Gagosz F. J. Am. Chem. Soc. 2012; 134: 828
  • 12 Hu Y. Ding Q. Ye S. Peng Y. Wu J. Tetrahedron 2011; 67: 7258
  • 13 Carter NB. Mabon R. Richecœur AM. E. Sweeney JB. Tetrahedron 2002; 58: 9117
  • 14 Pelletier SW. Djarmati Z. Lajšić SD. Mićović IV. Yang DT. C. Tetrahedron 1975; 31: 1659