Synlett 2017; 28(12): 1383-1388
DOI: 10.1055/s-0036-1588978
synpacts
© Georg Thieme Verlag Stuttgart · New York

Recent Synthetic Advances on π-Extended Carbon Nanohoops

Yi Luan
a   School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, P. R. of China
,
Huan Cong*
b   Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 29 Zhongguancun East Road, Beijing, 100190, P. R. of China   Email: hcong@mail.ipc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 01 January 2017

Accepted after revision: 02 March 2017

Publication Date:
20 March 2017 (online)


Dedicated to Professor John A. Porco Jr.

Abstract

As a part of the ‘bottom-up’ campaign for the precise preparation of carbon nanotubes, the chemical synthesis of carbon nanohoops is observing rapid progress, with a number of milestone achievements, over the past decade. With simple carbon nanohoops (e.g. cycloparaphenylenes) now no longer elusive targets, this Synpacts article highlights latest synthetic advances to further build up nanohoops’ π-systems. Works reviewed herein include the study explaining the unsuccessful Scholl reaction method, the preparation of a carbon nanohoop consisting solely of hexabenzocoronene units, syntheses of π-extended carbon nanohoops employing the ring-closing metathesis method, and the anthracene photodimerization/cycloreversion method for anthracene-incorporated carbon nanohoop synthesis.

1 Introduction

2 Some Latest Syntheses of π-Extended Carbon Nanohoops

3 Conclusion

 
  • References and Notes

    • 1a Carbon Nanomaterials. Gogotsi Y. Presser V. CRC Press; Boca Raton: 2013. 2nd ed.
    • 1b Carbon Nanomaterials for Advanced Energy Systems: Advances in Materials Synthesis and Device Applications. Lu W. Baek J.-B. Dai L. Wiley; Hoboken: 2015
    • 3a Peng X. Komatsu N. Bhattacharya S. Shimawaki T. Aonuma S. Kimura T. Osuka A. Nat. Nanotech. 2007; 2: 361
    • 3b Hersam MC. Nat. Nanotech. 2008; 3: 387
    • 3c Yang F. Wang X. Zhang D. Yang J. Luo D. Xu Z. Wei J. Wang J.-Q. Xu Z. Peng F. Li X. Li R. Li Y. Li M. Bai X. Ding F. Li Y. Nature (London, U.K.) 2014; 510: 522
    • 4a Omachi H. Nakayama T. Takahashi E. Segawa Y. Itami K. Nat. Chem. 2013; 5: 572
    • 4b Sanchez-Valencia JR. Dienel T. Groning O. Shorubalko I. Müller A. Jansen M. Amsharov K. Ruffieux P. Fasel R. Nature (London, U.K.) 2014; 512: 61
  • 5 Darzi ER. Jasti R. Chem. Soc. Rev. 2015; 44: 6401
  • 6 Hirst ES. Jasti R. J. Org. Chem. 2012; 77: 10473
  • 7 Jasti R. Bhattacharjee J. Neaton JB. Bertozzi CR. J. Am. Chem. Soc. 2008; 130: 17646
  • 8 Sisto TJ. Golder MR. Hirst ES. Jasti R. J. Am. Chem. Soc. 2011; 133: 15800
  • 9 Takaba H. Omachi H. Yamamoto Y. Bouffard J. Itami K. Angew. Chem. Int. Ed. 2009; 48: 6112
  • 10 Yamago S. Watanabe Y. Iwamoto T. Angew. Chem. Int. Ed. 2010; 49: 757
    • 11a Lewis SE. Chem. Soc. Rev. 2015; 44: 2221
    • 11b Golder MR. Jasti R. Acc. Chem. Res. 2015; 48: 557
    • 11c Narita A. Wang X.-Y. Feng X. Müllen K. Chem. Soc. Rev. 2015; 44: 6616
    • 11d Yamago S. Kayahara E. Hashimoto S. Cycloparaphenylenes and Carbon Nanorings. In Polycyclic Arenes and Heteroarenes: Synthesis, Properties, and Applications . Qian M. John Wiley and Sons; Chichester: 2015: 143-162
    • 11e Hammer BA. G. Müllen K. Chem. Rev. 2016; 116: 2103
    • 11f Segawa Y. Ito H. Itami K. Nat. Rev. Mater. 2016; 1: 15002
  • 12 For example, TCI maintains stock for [5] and [12] CPP’s for sale: http://www.tcichemicals.com/eshop/en/us/category_index/12955/.
  • 13 Golling FE. Quernheim M. Wagner M. Nishiuchi T. Müllen K. Angew. Chem. Int. Ed. 2014; 53: 1525
  • 14 Nishiuchi T. Feng X. Enkelmann V. Wagner M. Müllen K. Chem. Eur. J. 2012; 18: 16621
  • 15 Sisto TJ. Zakharov LN. Whitea BM. Jasti R. Chem. Sci. 2016; 7: 3681
  • 16 Lu D. Zhuang G. Wu H. Wang S. Yang S. Du P. Angew. Chem. Int. Ed. 2017; 56: 158
  • 17 Hitosugi S. Nakanishi W. Yamasaki T. Isobe H. Nat. Commun. 2011; 2: 492
    • 18a Bonifacio MC. Robertson CR. Jung J.-Y. King BT. J. Org. Chem. 2005; 70: 8522
    • 18b Sakurai H. Daiko T. Hirao T. Science 2003; 301: 1878
    • 18c Collins SK. Grandbois A. Vachon MP. Côté J. Angew. Chem. Int. Ed. 2006; 45: 2923
    • 18d Kumar B. Viboh RL. Bonifacio MC. Thompson WB. Buttrick JC. Westlake BC. Kim M.-S. Zoellner RW. Varganov SA. Mörschel P. Teteruk J. Schmidt MU. King BT. Angew. Chem. Int. Ed. 2012; 51: 12795
  • 19 Golder MR. Colwell CE. Wong BM. Zakharov LN. Zhen J. Jasti R. J. Am. Chem. Soc. 2016; 138: 6577
    • 20a Becker H.-D. Chem. Rev. 1993; 93: 145
    • 20b Bouas-Laurent H. Castellan A. Desvergne J.-P. Lapouyade R. Chem. Soc. Rev. 2000; 29: 43
    • 20c Bouas-Laurent H. Castellan A. Desvergne J.-P. Lapouyade R. Chem. Soc. Rev. 2001; 30: 248
    • 20d Gao D. Meier H. Angew. Chem. Int. Ed. 2001; 40: 186
    • 20e Benard CP. Geng Z. Heuft MA. VanCrey K. Fallis AG. J. Org. Chem. 2007; 72: 7229
    • 20f Liang C.-K. Desvergne J.-P. Bassani DM. Photochem. Photobiol. Sci. 2014; 13: 316
    • 20g Fukuhara G. Iida K. Kawanami Y. Tanaka H. Mori T. Inoue Y. J. Am. Chem. Soc. 2015; 137: 15007
    • 20h Li P. Wong BM. Zakharov LN. Jasti R. Org. Lett. 2016; 18: 1574
    • 20i Liu W.-G. Guo L.-F. Fan Y.-Y. Huang Z.-A. Cong H. Chin. J. Org. Chem. 2017; 37 DOI: in press; 10.6023/cjoc201611001.
  • 21 Huang Z.-A. Chen C. Yang X.-D. Fan X.-B. Zhou W. Tung C.-H. Wu L.-Z. Cong H. J. Am. Chem. Soc. 2016; 138: 11144
    • 22a Yamamoto T. Wakabayashi S. Osakada K. J. Organomet. Chem. 1992; 428: 223
    • 22b Nelson TD. Crouch RD. Org. React. 2004; 63: 265
    • 22c Omachi H. Segawa Y. Itami K. Acc. Chem. Res. 2012; 45: 1378
    • 22d Ohlendorf G. Mahler CW. Jester S.-S. Schnakenburg G. Grimme S. Höger S. Angew. Chem. Int. Ed. 2013; 52: 12086
    • 22e Kayahara E. Patel VK. Yamago S. J. Am. Chem. Soc. 2014; 136: 2284
    • 22f Myśliwiec D. Kondratowicz M. Lis T. Chmielewski PJ. Stępień M. J. Am. Chem. Soc. 2015; 137: 1643