Synlett 2017; 28(12): 1486-1490
DOI: 10.1055/s-0036-1588769
letter
© Georg Thieme Verlag Stuttgart · New York

Intercepting the Nazarov Oxyallyl Intermediate with α-Formyl­vinyl Anion Equivalents to Access Formal Morita–Baylis–Hillman Alkylation Products

Yen-Ku Wu
,
Rongrong Lin
,
F. G. West*
Supported by: Natural Sciences and Engineering Research Council of Canada (249822)
Further Information

Publication History

Received: 01 February 2017

Accepted after revision: 08 March 2017

Publication Date:
18 April 2017 (online)


Abstract

A Lewis acid catalyzed cationic domino reaction involving sequential electrocyclization and polar addition of allenol ethers onto the resulting oxyallyl species is described. The overall sequence allows a highly stereoselective synthesis of densely substituted cyclopentanoid compounds containing α-formylvinyl functionality which is formally equivalent to products of a Morita–Baylis–Hillman alkylation process.

Supporting Information

 
  • References and Notes

  • 1 Current location: Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan.
  • 2 Tietze LF. Chem. Rev. 1996; 96: 115
  • 3 Barton DH. R. Aldrichimica Acta 1990; 23: 3

    • For recent reviews, see:
    • 4a Simeonov SP. Nunes JP. M. Guerra K. Kurteva VB. Afonso CA. M. Chem. Rev. 2016; 116: 5744
    • 4b Jana N. Driver TG. Org. Biomol. Chem. 2015; 13: 9720
    • 4c West FG. Scadeng O. Wu Y.-K. Fradette RJ. Joy S. In Comprehensive Organic Synthesis . Molander GA. Knochel P. Elsevier; Oxford: 2014. 2nd ed., Vol. 5 827
    • 4d Tius MA. Chem. Soc. Rev. 2014; 43: 2979
    • 4e Spencer WT. Vaidya T. Frontier AJ. Eur. J. Org. Chem. 2013; 3621
    • 4f Shimada N. Stewart C. Tius MA. Tetrahedron 2011; 67: 5851
    • 4g Vaidya T. Eisenberg R. Frontier AJ. ChemCatChem 2011; 3: 1531

      Selected recent examples:
    • 5a Williams CW. Shenje R. France S. J. Org. Chem. 2016; 81: 8253
    • 5b William R. Wang S. Mallick A. Liu XW. Org. Lett. 2016; 18: 4458
    • 5c William R. Leng WL. Wang S. Liu X.-W. Chem. Sci. 2016; 7: 1100
    • 5d Shenje R. Williams CW. Francois KM. France S. Org. Lett. 2014; 24: 6468
    • 5e William R. Wang S. Ding F. Arviana EN. Liu X.-W. Angew. Chem. Int. Ed. 2014; 53: 10742
    • 5f Riveira MJ. Mischne MP. J. Org. Chem. 2014; 79: 8244
    • 5g Chaplin JH. Jackson K. White JM. Flynn BL. J. Org. Chem. 2014; 79: 3659
    • 5h Bonderoff SA. Grant TN. West FG. Tremblay M. Org. Lett. 2013; 15: 2888
    • 5i Scadeng O. Ferguson MJ. West FG. Org. Lett. 2011; 13: 114

    • For a review, see:
    • 5j Wenz DR. Read de Alaniz J. Eur. J. Org. Chem. 2015; 23
  • 6 For a review, see: Grant TN. Rieder CJ. West FG. Chem. Commun. 2009; 5676
    • 7a Wu Y.-K. Dunbar CR. McDonald R. Ferguson MJ. West FG. J. Am. Chem. Soc. 2014; 136: 14903
    • 7b Wu Y.-K. West FG. Org. Lett. 2014; 16: 2534
    • 7c Wu Y.-K. McDonald R. West FG. Org. Lett. 2011; 13: 3584
    • 8a Schatz DJ. Kwon Y. Scully TW. West FG. J. Org. Chem. 2016; 81: 12494
    • 8b Kwon Y. Scadeng O. McDonald R. West FG. Chem. Commun. 2014; 50: 5558
    • 8c Kwon Y. McDonald R. West FG. Angew. Chem. Int. Ed. 2013; 52: 8616
  • 9 Liu W. Khedkar V. Baskar B. Schürmann M. Kumar K. Angew. Chem. Int. Ed. 2011; 50: 6900
  • 11 Chinchilla R. Nájera C. Chem. Rev. 2000; 100: 1891

    • Selected examples:
    • 12a Satpathi B. Ramasastry SS. V. Angew. Chem. Int. Ed. 2016; 55: 1894
    • 12b Li Y.-Q. Wang H.-J. Huang Z.-Z. J. Org. Chem. 2016; 81: 4429
    • 12c Cran JW. Krafft ME. Seibert KA. Haxell TF. N. Wright JA. Hirosawa C. Abboud KA. Tetrahedron 2011; 67: 9922
    • 12d Webber P. Krische MJ. J. Org. Chem. 2008; 73: 9379
    • 12e Shi M. Liu X.-G. Org. Lett. 2008; 10: 1043
    • 12f Krafft ME. Haxell TF. N. Seibert KA. Abboud KA. J. Am. Chem. Soc. 2006; 128: 4174
    • 12g Krafft ME. Seibert KA. Haxell TF. N. Hirosawa C. Chem. Commun. 2005; 5772
    • 12h Krafft ME. Haxell TF. N. J. Am. Chem. Soc. 2005; 127: 10168
    • 12i Koech PK. Krische MJ. J. Am. Chem. Soc. 2004; 126: 5350
    • 12j Jellerichs BG. Kong J.-R. Krische MJ. J. Am. Chem. Soc. 2003; 125: 7758

      Selected examples:
    • 13a Trost BM. Luan X. Miller Y. J. Am. Chem. Soc. 2011; 133: 12824
    • 13b Reynolds TE. Binkley MS. Scheidt KA. Org. Lett. 2008; 10: 5227
    • 13c Reynold TE. Binkley MS. Scheidt KA. Org. Lett. 2008; 10: 2449
    • 13d Reynold TE. Scheidt KA. Angew. Chem. Int. Ed. 2007; 46: 7806
    • 13e Mueller AJ. Jennings MP. Org. Lett. 2007; 9: 5327
    • 13f Yoshizawa K. Shioiri T. Tetrahedron 2007; 63: 6259
    • 13g Gudimalla N. Fröhlich R. Hoppe D. Org. Lett. 2004; 6: 4005
    • 13h Li G. Wei H.-X. Phelps BS. Purkiss DW. Kim SH. Org. Lett. 2001; 3: 823
    • 13i Stergiades IA. Tius MA. J. Org. Chem. 1999; 64: 7547
    • 13j Reich HJ. Eisenhart EK. Olson RE. Kelly MJ. J. Am. Chem. Soc. 1986; 108: 7791
    • 13k Fleming I. Perry DA. Tetrahedron 1981; 37: 4027
    • 13l Kuwajima I. Kato M. Tetrahedron Lett. 1980; 21: 623
  • 14 Ishikawa T. Mizuta T. Hagiwara K. Aikawa T. Kudo T. Saito S. J. Org. Chem. 2003; 68: 3702
  • 15 Representative Procedures Preparation of 3h via Method A Dienone 1d (41.5 mg, 0.14 mmol) and allenol ether 2c (61.9 mg, 0.29 mmol, 2.0 equiv) were dissolved in CH2Cl2 (2 mL, 0.1 M in dienone) under argon and cooled to –78 °C (acetone/dry ice bath). TMSOTf (27.8 μL, 0.15 mmol, 1.1 equiv) was added dropwise. The reaction mixture was stirred at the same temperature for 15 min, then was quenched with sat. aq NaHCO3 (5 mL) and warmed to r.t. The aqueous layer was extracted with CH2Cl2 (2 × 10 mL), the combined organic layers were washed with brine solution (1 × 15 mL) and dried over anhydrous MgSO4. After filtration, the solvent was removed by rotary evaporation providing a crude residue that was purified by flash column chromatography (silica gel, 8:1 hexane–EtOAc) to give 29.9 mg (51%) of 3h as a colorless oil. IR (film): 3060, 3028, 2958, 1737, 1670, 1601, 1498, 1452 cm–1. 1H NMR (500 MHz, CDCl3): δ = 9.86 (s, 1 H), 7.43–7.40 (m, 3 H), 7.40–7.36 (m, 2 H), 7.33–7.28 (m, 2 H), 7.25–7.21 (m, 3 H), 7.21–7.16 (m, 2 H), 7.15–7.10 (m, 2 H), 7.06–7.02 (m, 2 H), 3.97 (d, J = 11.9 Hz, 1 H) 3.59 (app. t, J = 11.8 Hz, 1 H), 3.23 (app. p, J = 5.8 Hz, 1 H), 1.77–1.68 (m, 1 H), 1.68–1.58 (m, 1 H), 1.47–1.35 (m, 1 H), 1.29–1.17 (m, 1 H), 0.93 (s, 3 H), 0.83 (t, J = 7.3 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 218.6, 192.5, 149.5, 143.3, 141.9, 136.5, 133.9, 130.0, 129.3, 128.5, 128.5, 128.0, 127.8, 126.8, 126.7, 56.0, 56.0, 55.9, 48.8, 31.5, 20.1, 16.0, 14.3 [one sp2 carbon signal is missing due to peak overlap]. HRMS (EI, M+): m/z calcd for C30H30O2: 422.2246; found: 422.2253. Preparation of 3b via Method B Dienone 1b (47.8 mg, 0.148 mmol) and allenol ether 2a (41.6 mg, 0.296 mmol, 2.0 equiv) were dissolved in DCE (2 mL, 0.1 M in dienone) under argon at r.t. Sc(OTf)3 (14.5 mg, 0.029 mmol, 0.2 equiv) was added. The reaction mixture was stirred at the same temperature for 30 min then was quenched with sat. aq NaHCO3 (5 mL). The aqueous layer was extracted with CH2Cl2 (2 × 10 mL), the combined organic layers were washed with brine (1 × 15 mL) and dried over anhydrous MgSO4. After filtration, the solvent was removed by rotary evaporation providing a crude residue that was purified by flash column chromatography (silica gel, 8:1 hexane–EtOAc) to give 30.6 mg (55%) of 3b as a colorless oil. IR (film): 3034, 2958, 1739, 1689, 1612, 1583, 1514, 1463 cm–1. 1H NMR (500 MHz, CDCl3): δ = 9.60 (s, 1 H), 7.25–7.21 (m, 2 H), 6.91–6.87 (m, 2 H), 6.80–6.75 (m, 2 H), 6.74–6.70 (m, 2 H), 6.28 (s, 1 H), 6.10 (s, 1 H), 3.84 (d, J = 12.1 Hz, 1 H), 3.73 (s, 3 H), 3.72 (s, 3 H), 3.27 (app. t, J = 11.9 Hz, 1 H), 3.03 (dq, J = 11.7, 7.1 Hz, 1 H), 1.17 (d, J = 7.1 Hz, 3 H), 0.86 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 218.8, 194.0, 158.4, 158.4, 152.1, 138.3, 133.0, 130.1, 128.7, 128.4, 114.0, 113.3, 55.1, 55.1, 54.8, 53.8, 51.9, 50.7, 16.2, 13.6. HRMS (EI, M+): m/z calcd for C24H26O4: 378.1831; found: 378.1831.
    • 16a He W. Herrick IR. Atesin TA. Caruana PA. Kellenberger CA. Frontier AJ. J. Am. Chem. Soc. 2008; 130: 1003
    • 16b He W. Sun X. Frontier AJ. J. Am. Chem. Soc. 2003; 125: 14278

      For selected recent examples, see:
    • 17a Shirinian VZ. Lvov AG. Yadykov AV. Yaminova LV. Kachala VV. Markosyan AI. Org. Lett. 2016; 18: 6260
    • 17b Takeda T. Harada S. Nishida A. Org. Lett. 2015; 17: 5184
    • 17c Jolit A. Walleser PM. Yap GP. A. Tius MA. Angew. Chem. Int. Ed. 2014; 53: 6180
    • 17d Xi ZG. Zhu L. Luo S. Cheng JP. J. Org. Chem. 2013; 78: 606
    • 17e Hutson GE. Türkmen YE. Rawal VH. J. Am. Chem. Soc. 2013; 135: 4988
    • 17f Malona JA. Cariou K. Spencer WT. Frontier AJ. J. Org. Chem. 2012; 77: 1891

      For early reports on catalytic interrupted Nazarov reactions, see:
    • 18a Giese S. West FG. Tetrahedron 2000; 56: 10221
    • 18b Wang Y. Arif AM. West FG. J. Am. Chem. Soc. 1999; 121: 876
    • 18c Giese S. West FG. Tetrahedron Lett. 1998; 39: 8393