Synlett 2017; 28(09): 1005-1010
DOI: 10.1055/s-0036-1588721
synpacts
© Georg Thieme Verlag Stuttgart · New York

Pattern-Generating Unimolecular Sensors: For Future Differential Sensing and Molecular Computing

Bhimsen Rout*
a   Institute of Medical Biology, Agency for Science, Technology and Research, 138648 Biopolis, Singapore
,
Paul L. Bigliardi
a   Institute of Medical Biology, Agency for Science, Technology and Research, 138648 Biopolis, Singapore
b   YLL School of Medicine, National University of Singapore and UMC, National University Hospital, Singapore   Email: bhimsen.rout@imb.a-star.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 26 November 2016

Accepted after revision: 24 January 2017

Publication Date:
16 February 2017 (online)


Abstract

Pattern-generating unimolecular sensors are an innovative class of analytical and computing systems that utilize inherent molecular mechanisms to create multiple optical responses in a manner similar to that in which arrays of small reporter molecules can be engineered to function as cross-reactive sensors. Pattern-generating unimolecular sensors can detect and discriminate between a wide range of chemical and biochemical analytes, and they can also be used in computation, where they function as molecular logic devices utilizing chemometric analysis. This feature article summarizes the various pattern-generating approaches and their miniaturization to a unimolecular level in the fields of differential sensing and molecular computing.

 
  • References

    • 1a Persaud K, Dodd G. Nature 1982; 299: 352-352
    • 1b Dentoni L, Capelli L, Sironi S, Del Rosso R, Zanetti S, Della Torre M. Sensors 2012; 12: 14363-14363

      For selected reviews, see:
    • 2a Capelli L, Sironi S, Del Rosso R. Sensors 2014; 14: 19979-19979
    • 2b Rock F, Barsan N, Weimar U. Chem. Rev. 2008; 108: 705-705
    • 2c Turner AP. F, Magan N. Nat. Rev. Microbiol. 2004; 2: 161-161
    • 2d Wilson AD, Baietto M. Sensors 2009; 9: 5099-5099
    • 2e Tisch U, Haick H. Rev. Chem. Eng. 2010; 26: 171-171
    • 3a de Silva AP, Gunaratne HQ. N, Gunnlaugsson T, Huxley AJ. M, McCoy CP, Rademacher JT, Rice TE. Chem. Rev. 1997; 97: 1515-1515
    • 3b Callan JF, de Silva AP, Magri DC. Tetrahedron 2005; 61: 8551-8551
    • 3c Sinkeldam RW, Greco NJ, Tor Y. Chem. Rev. 2010; 110: 2579-2579
    • 3d Domaille DW, Que EL, Chang CJ. Nat. Chem. Biol. 2008; 4: 168-168
    • 4a Griffin AB, Adams SR, Tsien RY. Science 1998; 281: 269-269
    • 4b Giepmans BN. G, Adams SR, Ellisman MH, Tsien RY. Science 2006; 312: 217-217

      For metals, see:
    • 5a Tomat E, Lippard SJ. Curr. Opin. Chem. Biol. 2010; 14: 225-225

    • For saccharides, see:
    • 5b James TD, Phillips MD, Shinkai S. Boronic Acids in Saccharide Recognition . RSC; Cambridge: 2006
    • 5c Bull SD, Davidson MG, van den Elsen JM. H, Fossey JS, Jenkins AT. A, Jiang Y.-B, Kubo Y, Marken F, Sakurai K, Zhao J, James TD. Acc. Chem. Res. 2013; 46: 312-312

    • For phosphates, see:
    • 5d Sakamoto T, Ojida A, Hamachi I. Chem. Commun. 2009; 141-141

    • For anions, see:
    • 5e Sessler JL, Gale PA, Cho W.-S. In Anion Receptor Chemistry . Stoddart JF. Royal Society of Chemistry; Cambridge: 2006: 320
    • 6a Tian H. Angew. Chem. Int. Ed. 2010; 49: 4710-4710
    • 6b de Silva AP, Gunaratne HQ. N, McCoy CP. A. Nature 1993; 364: 42-42
    • 6c de Silva AP, Uchiyama S. Nat. Nanotechnol. 2007; 2: 399-399
    • 6d Pischel U, Andréasson J, Gust D, Pais VF. ChemPhysChem 2013; 14: 28-28
    • 6e de Ruiter G, van den Boom ME. Acc. Chem. Res. 2011; 44: 563-563
    • 6f Amelia M, Zou L, Credi A. Coord. Chem. Rev. 2010; 254: 2267-2267
    • 6g Andréasson J, Pischel U. Chem. Soc. Rev. 2015; 44: 1053-1053
  • 7 Magri DC, Brown GJ, McClean GD, de Silva AP. J. Am. Chem. Soc. 2006; 128: 4950-4950
    • 8a de Silva AP. Beilstein J. Org. Chem. 2015; 11: 2774-2774
    • 8b Uchiyama S, Fukatsu E, McClean GD, de Silva AP. Angew. Chem. Int. Ed. 2016; 55: 768-768
    • 8c de Silva AP, Uchiyama S. Top. Curr. Chem. 2011; 300: 1-1
    • 9a de Silva AP, James MR, McKinney BO. F, Pears DA, Weir SM. Nat. Mater. 2006; 5: 787-787
    • 9b Uchiyama S, Iwai K, de Silva A. Angew. Chem. Int. Ed. 2008; 47: 4609-4609
    • 9c Yuan L, Lin W, Xie Y, Chen B, Zhu S. J. Am. Chem. Soc. 2012; 134: 1305-1305
    • 9d Ling J, Naren G, Kelly J, Moody TS, de Silva AP. J. Am. Chem. Soc. 2015; 137: 3763-3763
  • 10 Gardner JW, Bartlett PN. Electronic Noses: Principles and Applications . Oxford University Press; Oxford: 1999
    • 11a Miranda OR, Creran B, Rotello VM. Curr. Opin. Chem. Biol. 2010; 14: 728-728
    • 11b Umali AP, Anslyn EV. Curr. Opin. Chem. Biol. 2010; 14: 685-685
    • 11c Severin K. Curr. Opin. Chem. Biol. 2010; 14: 737-737
    • 11d Anzenbacher PJr, Liu Y.-l, Kozelkova ME. Curr. Opin. Chem. Biol. 2010; 14: 693-693
    • 11e Shimizu KD, Stephenson CJ. Curr. Opin. Chem. Biol. 2010; 14: 743-743
    • 11f Musto CJ, Suslick KS. Curr. Opin. Chem. Biol. 2010; 14: 758-758
    • 11g Walt DR. Curr. Opin. Chem. Biol. 2010; 14: 767-767
    • 11h Stojanovic MN, Worgall TS. Curr. Opin. Chem. Biol. 2010; 14: 751-751
    • 12a Askima JR, Mahmoudiab M, Suslick KS. Chem. Soc. Rev. 2013; 42: 8649-8649
    • 12b Anzenbacher PJr, Lubal P, Buček P, Palacios MA, Kozelkova ME. Chem. Soc. Rev. 2010; 39: 3954-3954
    • 12c Lavigne JJ, Anslyn EV. Angew. Chem. Int. Ed. 2001; 40: 3118-3118
  • 13 Lozano J, de la Vega PM, Martinez E, Alvarez F, Morera J, Aguilera T. Chem. Eng. Trans. 2010; 23: 165-165 ; DOI: 10.3303/CET1023028
    • 14a Margulies D, Hamilton AD. J. Am. Chem. Soc. 2009; 131: 9142-9142
    • 14b Margulies D, Hamilton AD. Curr. Opin. Chem. Biol. 2010; 14: 705-705
    • 15a Rout B, Unger L, Armony G, Iron MA, Margulies D. Angew. Chem. Int. Ed. 2012; 51: 12477-12477
    • 15b Rout B, Milko P, Iron MA, Motiei L, Margulies D. J. Am. Chem. Soc. 2013; 135: 15330-15330
    • 15c Sarkar T, Selvakumar K, Motiei L, Margulies D. Nat. Commun. 2016; 7: 11374-11374
    • 15d Rout B, Motiei L, Margulies D. Synlett 2014; 25: 1050-1050
  • 16 Rout B. Sci. Rep. 2016; 6: 27115-27115
    • 17a Dolmans DE, Fukumura D, Jain RK. Nat. Rev. Cancer 2003; 3: 380-380
    • 17b O’Conner A, Gallagher WA, Byrne AT. Photochem. Photobiol. 2009; 85: 1053-1053
    • 18a Wilson BC, Patterson MS, Lilge L. Laser Med. Sci. 1997; 12: 182-182
    • 18b Mustafa FH, Jaafer MS. Indian J. Phys. 2013; 87: 203-203
  • 19 Slastnikova TA, Rosenkranz AA, Lupanova TN, Gulak PV, Gnuchev NV, Sobolev AS. Dokl. Biochem. Biophys. 2012; 446: 235-235
  • 20 Anslyn EV. J. Org. Chem. 2007; 72: 687-687
    • 21a Teichert JF, Mazunin D, Bode JW. J. Am. Chem. Soc. 2013; 135: 11314-11314
    • 21b Larson KK, He M, Teichert JF, Naganawa A, Bode JW. Chem. Sci. 2012; 3: 1825-1825
    • 22a Komatsu H, Citterio D, Fujiwara Y, Minamihashi K, Araki Y, Hagiwara M, Suzuki K. Org. Lett. 2005; 7: 2857-2857
    • 22b Nelson TL, O’Sullivan C, Greene NT, Maynor MS, Lavigne JJ. J. Am. Chem. Soc. 2006; 128; 5640-128; 5640
    • 22c Lee B, Chen S, Heinis C, Scopelliti R, Severin K. Org. Lett. 2013; 15; 3456-15; 3456

      For small-molecule-based logic-gate therapy, see:
    • 23a Peri-Naor R, Ilani T, Motiei L, Margulies D. J. Am. Chem. Soc. 2015; 137: 9507-9507
    • 23b Erbas-Cakmak S, Bozdemir OA, Cakmak Y, Akkaya EU. Chem. Sci. 2013; 4: 858-858
    • 23c Amir RJ, Popkov M, Lerner RA, Barbas CF, Shabat D. Angew. Chem. Int. Ed. 2005; 44: 4378-4378

    • For DNA computing-based therapy see:
    • 23d Kolpashchikov DM, Stojanovic MN. J. Am. Chem. Soc. 2005; 127: 11348-11348
    • 23e Douglas SM, Bachelet I, Church GM. Science 2012; 335: 831-831
    • 23f Xie Z, Wroblewska L, Prochazka L, Weiss R, Benenson Y. Science 2011; 333: 1307-1307
    • 24a Cramers P, Ruevekamp M, Oppelaar H, Dalesio O, Baas P, Stewart FA. Br. J. Cancer 2003; 88: 283-283
    • 24b Morris K. Lancet Oncol. 2000; 1: 10-10