Synthesis 2017; 49(09): 2074-2080
DOI: 10.1055/s-0036-1588700
paper
© Georg Thieme Verlag Stuttgart · New York

Determination of the Absolute Configuration and a Practical Chiral Synthesis of 5-[5-(1-Methylethoxy)pyridin-2-yl]-5-methyl­imidazolidine-2,4-dione as a Novel Liver X Receptor β-Selective Agonist

Minoru Koura
a   Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Co., Ltd., 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
,
Hisashi Sumida
a   Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Co., Ltd., 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
,
Kimiyuki Shibuya*
a   Tokyo New Drug Research Laboratories, Pharmaceutical Division, Kowa Co., Ltd., 2-17-43, Noguchicho, Higashimurayama, Tokyo 189-0022, Japan
,
Shigeru Ohba
b   Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1, Kohoku-ku, Yokohama 223-8521, Japan   Email: k-sibuya@kowa.co.jp
› Author Affiliations
Further Information

Publication History

Received: 30 November 2016

Accepted after revision: 13 January 2017

Publication Date:
31 January 2017 (online)


Abstract

We determined that the absolute configuration of 5-[5-(1-methylethoxy)pyridin-2-yl]-5-methylimidazolidine-2,4-dione (hydantoin) is the (S)-form for the liver X receptor (LXR) β-selective agonist through X-ray crystal structure analysis of the hydantoin hydrogen bromide salt. Furthermore, we established a practical synthesis of the chiral hydantoin with 99% ee by the optical resolution of racemic methyl 2-amino-2-[5-(1-methylethoxy)pyridin-2-yl]propanoate with d-(–)-mandelic acid on a multi-kilogram scale. Finally, we improved the synthesis method of the LXR β-selective agonist.

Supporting Information

 
  • References

  • 1 Koura M, Yamaguchi Y, Kurobuchi S, Sumida H, Watanabe Y, Enomoto T, Matsuda T, Okuda A, Koshizawa T, Matsumoto Y, Shibuya K. Bioorg. Med. Chem. 2016; 24: 3436 ; see Supporting Information
  • 2 CCDC 1484011 [(S)-(+)-2·HBr] contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/getstructures.
    • 3a Yee NK. Org. Lett. 2000; 2: 2781
    • 3b Chowdari NS, Barbas III CF. Org. Lett. 2005; 7: 867
    • 3c A reviewer suggested authors to make a comment on the possibility of directly optical resolution of racemic hydantoin (±)-2. According to the ref. 3d, we followed the protocol and conducted an optical resolution of racemic 5-[4-(1-methylethoxy)phenyl]-5-methylimidazolidine-2,4-dione with (+)-phenethylamine in a direct manner, but failed to obtain a satisfactory result (0 to 15% ee). Therefore, we have no option to apply this method to hydantoin (±)-2.
    • 3d Coquerel G, Petit M.-N, Bouaziz R, Depernet D. Chirality 1992; 4: 400
    • 4a Lim DS. W, Anderson EA. Synthesis 2012; 44: 983
    • 4b Shibasaki M, Kanai M. Asymmetric Synthesis and Application of α-Amino Acids, ACS Symposium Series 1009. Soloshonok VA, Izawa K. American Chemical Society; Washington DC: 2009. Chap. 7, 102
    • 4c Masumoto S, Usuda H, Suzuki M, Kanai M, Shibasaki M. J. Am. Chem. Soc. 2003; 125: 5634
    • 4d Kato N, Suzuki M, Kanai M, Shibasaki M. Tetrahedron Lett. 2004; 45: 3147
    • 4e Vachal P, Jacobsen EN. Org. Lett. 2000; 2: 867
    • 4f Vachal P, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 10012
    • 4g Wang J, Hu X, Jiang J, Gou S, Huang X, Liu X, Feng X. Angew. Chem. Int. Ed. 2007; 46: 8468
    • 4h Huang J, Liu X, Wen Y, Qin B, Feng X. J. Org. Chem. 2007; 72: 204
    • 4i Hashimoto T, Maruoka K. Chem. Rev. 2007; 107: 5656
    • 4j Kanemitsu T, Furukoshi S, Miyazaki M, Nagata K, Itoh T. Tetrahedron: Asymmetry 2015; 26: 214
    • 4k Ishihara K, Hamamoto H, Matsugi M, Shioiri T. Tetrahedron Lett. 2015; 56: 3169
    • 4l Green JE, Bender DM, Jackson S, O’Donnell MJ, McCarthy JR. Org. Lett. 2009; 11: 807-810
    • 5a An efficient synthesis of 5,5-disubstituted hydantoin via Pd-catalyzed C-arylation of amino acid derived hydantoin was reported, but the products were racemic: Nieto FF, Rosello JM, Lenoir S, Hardy S, Clayden J. Org. Lett. 2015; 17: 3838
    • 5b Atkinson RC, Nieto FF, Rosello JM, Clayden J. Angew. Chem. Int. Ed. 2015; 54: 8961
  • 6 Koura M, Sumida H, Yamazaki Y, Shibuya K. Tetrahedron: Asymmetry 2016; 27: 63
    • 7a Greenstein JP, Winitz M. Chemistry of the Amino Acids . Vols. 1–3. John Wiley; New York: 1961
    • 7b Shiraiwa T, Baba Y, Miyazaki H, Sakata S, Kawamura S, Uehara M, Kurokawa H. Bull. Chem. Soc. Jpn. 1993; 66: 1430
    • 7c Murakami H, Sakai K. J. Synth. Org. Chem. Jpn. 1990; 48: 850
    • 7d Corson PJ, Korte DE, Turner NJ. Tetrahedron: Asymmetry 1998; 9: 2587
    • 7e Washburn WN, Sun CQ, Bisacchi G, Wu G, Cheng PT, Sher PM, Ryono D, Gavai AV, Poss K, Girotra RN, McCann PJ, Mikkilineni AB, Dejneka TC, Wang TC, Merchant Z, Morella M, Arbeeny CM, Harper TW, Slusarchyk DA, Skwish S, Russell AD, Allen GT, Tesfamariam B, Frohlich BH, Abboa-Offei BE, Cap M, Waldron TL, George RJ, Young D, Dickinson KE, Seymour AA. Bioorg. Med. Chem. Lett. 2004; 14: 3525
    • 8a Bergs H. DE 566094, 1932
    • 8b Bucherer HT, Fischbeck HT. J. Prakt. Chem. 1934; 140: 69
    • 8c Bucherer HT, Steiner WT. J. Prakt. Chem. 1934; 140: 291
    • 8d Ware E. Chem. Rev. 1950; 46: 403

      When the analogue substrate, 2-amino-2-[4-(1-methyleth­oxy)phenyl]propanoic acid was reacted with SOCl2 in MeOH at r.t., the desired methyl ester was obtained in quantitative yield without accompanying with decarboxylation and side product. The cyclic sulfinate intermediates were reported in the following references:
    • 9a Dubuffet T, Lecouve J.-P. EP 1367061, 2003
    • 9b Bhirud SB, Ahmed S, Chandrasekhar B, Purushotham VL. A. US 2005171165, 2005

    • The examples of decarboxylation reaction were reported as follows:
    • 9c Kamogawa H, Kasai T, Andoh T, Nakamura T. Bull. Chem. Soc. Jpn. 1987; 60: 2905
    • 9d Leahy DK, Li J, Sausker JB, Zhu J, Fitzgerald MA, Lai C, Buono FG, Braem A, de Mas N, Manaloto Z, Lo E, Merkl W, Su B, Gao Q, Ng AT, Harz RA. Org. Process Res. Dev. 2010; 14: 1221
    • 9e Donald C, Boyd S. Tetrahedron Lett. 2012; 53: 3853
    • 10a Zhang S.-W, Harasimowicz MT, de Villiers MM, Yu L. J. Am. Chem. Soc. 2013; 135: 18981
    • 10b Ivanova BB, Spiteller M. Struct. Chem. 2010; 21: 989
  • 11 Buchard A, Carbery DR, Davidson MG, Ivanova PK, Jeffery BJ, Kociok-Köhn GI, Lowe JP. Angew. Chem. Int. Ed. 2014; 53: 13858
  • 12 Siedlecka R. Tetrahedron 2013; 69: 6331
    • 13a Shitara H, Shintani T, Kodama K, Hirose T. J. Org. Chem. 2013; 78: 9309
    • 13b Kodama K, Kurozumi N, Shitara H, Hirose T. Tetrahedron 2014; 70: 7923
  • 14 We confirmed the reproducibility after repeating the experiment as carefully as possible. The reason for the significant decrease in the enantiomeric excess was uncertain.