Synthesis 2017; 49(03): 504-525
DOI: 10.1055/s-0036-1588608
short review
© Georg Thieme Verlag Stuttgart · New York

Synthesis of Substituted Benzils from Diarylalkyne Oxidation

Ling-Zhi Yuan
BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France   Email: olivier.provot@u-psud.fr
,
Abdallah Hamze
BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France   Email: olivier.provot@u-psud.fr
,
Mouad Alami*
BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France   Email: olivier.provot@u-psud.fr
,
Olivier Provot*
BioCIS, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 92290, Châtenay-Malabry, France   Email: olivier.provot@u-psud.fr
› Author Affiliations
Further Information

Publication History

Received: 01 September 2016

Accepted after revision: 06 September 2016

Publication Date:
12 October 2016 (online)


Abstract

In this review, the oxidation of diarylalkynes leading to functionalized benzils [di(het)aryl 1,2-diketones] is summarized. Some synthetic one-pot transformations of internal arylalkynes leading to the construction of heterocycles are presented.

1 Introduction

2 Oxidation Using Inorganic Reagents

2.1 I2, I+, and NIS

2.2 Potassium Permanganate (KMnO4)

2.3 Sulfur Trioxide (SO3)

2.4 Potassium Peroxymonosulfate (Oxone)

2.5 O2, hν, MgBr2·Et2O

2.6 Cerium Ammonium Nitrate (CAN)

2.7 Overview of Inorganic Reagents

3 Metal-Catalyzed Oxidation of Diarylalkynes

3.1 Palladium Catalysts

3.2 Copper Catalysts

3.3 Iron Catalysts

3.4 Ruthenium Catalysts

3.5 Gold Catalysts

3.6 Mercury Catalysts

3.7 Overview of Metal Catalysts

4 Sequential Hydration–Oxidation of Diarylalkynes

5 Applications to the Synthesis of Heterocycles

5.1 One-Pot Access to Heterocycles

5.2 Access to Various Heterocycles

6 Conclusions

 
  • References


    • For selected examples see:
    • 1a Mahabusarakam W, Deachathai S, Phongpaichit S, Jansakul C, Taylor WC. Phytochemistry 2004; 65: 1185
    • 1b Johns SR, Lambenon JA, Sioum AA, Willing RJ. Aust. J. Chem. 1970; 23: 353
    • 1c Rodrigo RG. A, Manrke RH. F, Holland HL, MacLean DB. Can. J. Chem. 1976; 54: 471
    • 1d Re L, Maurer B, Ohloff G. Helv. Chim. Acta 1973; 56: 1882
    • 1e Angelstro MR, Mehdi S, Burkhart JP, Peet NP, Bey P. J. Med. Chem. 1990; 33: 11
    • 1f Nicolaou KC, Gray DL. F, Tae J. J. Am. Chem. Soc. 2004; 126: 613
    • 1g Wadkins RM, Hyatt JL, Wei X, Yoon KJ. P, Wierdl M, Edwards CC, Morton CL, Obenauer JC, Damodaran K, Beroza P, Danks MK, Potter PM. J. Med. Chem. 2005; 48: 2906
    • 2a Mousset C, Giraud A, Provot O, Hamze A, Bignon J, Liu JM, Thoret S, Dubois J, Brion J.-D, Alami M. Bioorg. Med. Chem. Lett. 2008; 18: 3266
    • 2b Ganapaty S, Srilakshmi GV. K, Pannakal ST, Rahman H, Laatsch H, Brun R. Phytochemistry 2009; 70: 95
    • 2c Al-kahraman YM. S. A, Yasinzai M, Singh GS. Arch. Pharmacal. Res. 2012; 35: 1009
  • 3 Harada Y, Nakagawa Y, Wadkins RM, Potter PM. Bioorg. Med. Chem. 2009; 17: 149
    • 4a Kósa C, Lukáč I, Weiss RG. Macromolecules 2000; 33: 4015
    • 4b Mosnáček J, Weiss RG, Lukáč I. Macromolecules 2002; 35: 3870
    • 4c Mosnáček J, Weiss RG, Lukáč I. Macromolecules 2004; 37: 1304
    • 4d Corrales T, Catalina F, Peinando C, Allen NS. J. Photochem. Photobiol. 2003; 159: 103
  • 5 Ita BI, Offiong OE. Mater. Chem. Phys. 2001; 70: 330

    • For selected exemples see:
    • 6a Mousset C, Provot O, Hamze A, Bignon J, Brion J.-D, Alami M. Tetrahedron 2008; 64: 4287
    • 6b Xu Y, Wan X. Tetrahedron Lett. 2013; 54: 642
    • 6c Wolkenberg SE, Wisnoski DD, Leister WH, Wang Y, Zhao Z, Lindsley CW. Org. Lett. 2004; 6: 1453
    • 6d McKenna JM, Halley F, Souness JE, McLay IM, Pickett SD, Collis AJ, Page K, Ahmed I. J. Med. Chem. 2002; 45: 2173
    • 6e Herrera AJ, Rondón M, Suárez E. J. Org. Chem. 2008; 73: 3384
    • 7a Clarke HT, Dreger EE. Org. Synth. Coll. Vol. I . John Wiley & Sons; London: 1941: 87
    • 7b Rigby WJ. J. Chem. Soc. 1951; 793
    • 7c Fieser LF, Fieser M. Reagents for Organic Synthesis . Vol. 1. Wiley; New York: 1967: 1
    • 7d McKillop A, Swann B, Ford ME, Taylor EC. J. Am. Chem. Soc. 1973; 95: 3641
    • 7e Zhang G.-S, Shi Q.-Z, Chen M.-F, Cai K. Synth. Commun. 1997; 27: 953
    • 7f Okimoto M, Takahashi Y, Nagata Y, Sasaki G, Numata K. Synthesis 2005; 705
    • 8a Khurana JM, Kandpal BM. Tetrahedron Lett. 2003; 44: 4909
    • 8b Anelli PL, Banfi S, Montanari F, Quici S. J. Org. Chem. 1989; 54: 2970
    • 8c Iwahama T, Sakaguchi S, Nishiyama Y, Ishii Y. Tetrahedron Lett. 1995; 36: 6923

      For selected examples of oxidation of diphenylacetylene, see:
    • 9a Wolfe S, Pilgrim WR, Garrard TF, Chamberlain P. Can. J. Chem. 1971; 49: 1099
    • 9b Lee DG, Chang VS. Synthesis 1978; 462
    • 9c Sheats WB, Olli LK, Stout R, Lundeen JT, Justus R, Nigh WG. J. Org. Chem. 1979; 44: 4075
    • 9d Gebeyehu G, McNelis E. J. Org. Chem. 1980; 45: 4280
    • 9e Müller P, Godoy J. Helv. Chim. Acta 1981; 64: 2531
    • 9f Wolfe S, Ingold CF. J. Am. Chem. Soc. 1983; 105: 7755
    • 9g Firouzabadi H, Sardarian AR. Synthesis 1985; 946
    • 9h Ballistreri FP, Failla S, Tomaselli GA, Curci R. Tetrahedron Lett. 1986; 27: 5139
    • 9i Firouzabadi H, Sardarian AR, Moosavipour H, Afshari GM. Synthesis 1986; 285
    • 9j Baskaran S, Das J, Chandrasekaran S. J. Org. Chem. 1989; 54: 5182
    • 9k Zhu Z, Espenson JH. J. Org. Chem. 1995; 60: 7728
    • 9l Clayton MD, Marcinow Z, Rabideau PW. Tetrahedron Lett. 1998; 39: 9127
    • 9m Li P, Cheong FH, Chao LC. F, Lin YH, Williams ID. J. Mol. Catal. A: Chem. 1999; 145: 111
    • 9n Che CM, Yu WY, Chan PM, Cheng WC, Peng SM, Lau KC, Li WK. J. Am. Chem. Soc. 2000; 122: 11380
    • 9o Kobayashi S, Miyamura H, Akiyama R, Ishida T. J. Am. Chem. Soc. 2005; 127: 9251
    • 9p Daw P, Petakamsetty R, Sarbajna A, Laha S, Ramapanicker R, Bera JK. J. Am. Chem. Soc. 2014; 136: 13987
  • 10 Yubusov MS, Filimonov VD. Synthesis 1991; 131
  • 11 Yusubov MS, Filimonov VD, Vasilyeva VP, Chi K.-W. Synthesis 1995; 1234
  • 12 Foster EJ, Babuin J, Nguyen N, Williams VE. Chem. Commun. 2004; 2052
  • 13 Sakthivel K, Srinivasan K. Eur. J. Org. Chem. 2011; 2781
  • 14 Sakthivel K, Srinivasan K. Eur. J. Org. Chem. 2013; 3386
  • 15 Tingoli M, Mazzella M, Panunzi B, Tuzi A. Eur. J. Org. Chem. 2011; 399
  • 16 Chen C.-Y, Hu W.-P, Liu M.-C, Yan P.-C, Wang J.-J, Chung M.-I. Tetrahedron 2013; 69: 9735
  • 17 Niu M, Fu H, Jiang Y, Zhao Y. Synthesis 2008; 2879
  • 18 Chikugo T, Yauchi Y, Ide M, Iwasawa T. Tetrahedron 2014; 70: 3988
  • 19 Srinavasan NS, Lee DG. J. Org. Chem. 1979; 44: 1574
  • 20 Trosien S, Waldvogel SR. Org. Lett. 2012; 14: 2976
  • 21 Walsh CJ, Mandal BK. J. Org. Chem. 1999; 64: 6102
  • 22 Deng X, Mani NS. Org. Lett. 2006; 8: 269
  • 23 Rogatchov VO, Filimonov VD, Yusubov MS. Synthesis 2001; 1001
  • 24 Chen Y.-J, Wu M.-J. Synthesis 2009; 2155
  • 25 Stille JK, Whitehurst DD. J. Am. Chem. Soc. 1964; 86: 4871
  • 26 Nobuta T, Tada N, Hattori K, Hirashima S.-i, Miura T, Itoh A. Tetrahedron Lett. 2011; 52: 875
  • 27 Fu C.-F, Hu W.-P, Vandavasi JK, Liao C.-C, Hung C.-Y, Wang J.-J. Synlett 2012; 23: 2132
  • 28 Muzard J. J. Mol. Catal. A: Chem. 2011; 338: 7
  • 29 Mori S, Takubo M, Yanase T, Maegawa T, Monguchi Y, Sajiki H. Adv. Synth. Catal. 2010; 352: 1630
  • 30 Sawama Y, Takubo M, Mori S, Monguchi Y, Sajiki H. Eur. J. Org. Chem. 2011; 3361
  • 31 Gao A, Yang F, Li J, Wu Y. Tetrahedron 2012; 68: 4950
  • 32 Ren W, Xia Y, Ji SJ, Zhang Y, Wan X, Zhao J. Org. Lett. 2009; 11: 1841
  • 33 Byun S, Chung J, Lim T, Kwon J, Kim BM. RCS Adv. 2014; 4: 34084
  • 34 Chandrasekhar S, Reddy NK, Kumar VP. Tetrahedron Lett. 2010; 51: 3623
  • 35 Chi KW, Yusubov MS, Filimonov VD. Synth. Commun. 1994; 24: 2119
  • 36 Yusubov MS, Zholobova GA, Vasilevsky SF, Tretyakov EV, Knight DW. Tetrahedron 2002; 58: 1607
  • 37 Zhang W, Zhang J, Liu Y, Xu Z. Synlett 2013; 24: 2709
  • 38 Banks RE, Lawrence NJ, Popplewell AL. Synlett 1994; 831
  • 39 Xu N, Gu DW, Dong YS, Yi FP, Cai L, Wu XY, Guo XX. Tetrahedron Lett. 2015; 56: 1517
  • 40 Min H, Palani T, Park K, Hwang J, Lee S. J. Org. Chem. 2014; 79: 6279
  • 41 Xia XF, Gu Z, Liu W, Wang N, Wang H, Xia Y, Gao H, Liu X. Org. Biomol. Chem. 2014; 12: 9909
  • 42 Giraud A, Provot O, Peyrat JF, Alami M, Brion JD. Tetrahedron 2006; 62: 7667
  • 43 Enthaler S. ChemCatChem 2011; 3: 1929
  • 44 Ren W, Liu J, Chen L, Wan X. Adv. Synth. Catal. 2010; 352: 1424
  • 45 Tummatorn J, Khorphueng P, Petsom A, Muangsin N, Chaichit N, Roengsumran S. Tetrahedron 2007; 63: 11878
  • 46 Miao Y, Dupé A, Bruneau C, Fischmeister C. Eur. J. Org. Chem. 2014; 5071
  • 47 Xu CF, Xu M, Jia YX, Li CY. Org. Lett. 2011; 13: 1556
  • 48 Liu Y, Chen X, Zhang J, Xu Z. Synlett 2013; 24: 1371
  • 49 Kucherov M. Ber. Dtsch. Chem. Ges. 1881; 14: 1540
  • 50 Jung ME, Deng G. Org. Lett. 2014; 16: 2142
  • 51 Wan Z, Jones CD, Mitchell D, Pu JY, Zhang TY. J. Org. Chem. 2006; 71: 826
  • 52 He W, Meyers MR, Hanney B, Spada A, Bilder G, Galzcinski H, Amin D, Needle S, Page K, Jayyosi Z, Perrone H. Bioorg. Med. Chem. Lett. 2003; 13: 3097
  • 53 Kim YB, Kim YH, Park JY, Kim SK. Bioorg. Med. Chem. Lett. 2004; 14: 541
  • 54 Zhao Z, Winnoski DD, Wolkenberg SE, Leister WH, Wang Y, Lindsley CW. Tetrahedron Lett. 2004; 45: 4873
  • 55 Girish YR, Kumar SS, Thimmaiah KN, Rangappa KS, Shashikanth S. RSC Adv. 2015; 5: 75533
  • 56 Hinsberg O. Ber. Dtsch. Chem. Ges. 1912; 45: 2413
  • 57 Traversone A, Brill WK.-D. Tetrahedron Lett. 2007; 48: 3535
  • 58 Dahra D, Gayen KS, Khamarui S, Pandit P, Ghosh S, Maiti DK. J. Org. Chem. 2012; 77: 10441
  • 59 Nongkhlaw RL, Nongrum R, Myrboh B. Heterocycl. Commun. 2003; 9: 365
  • 60 Zhao Z, Leister WH, Strauss KA, Wisnoski DD, Lindsley CW. Tetrahedron Lett. 2003; 44: 1123
  • 61 Brown RK. Indoles, Part 1 . In The Chemistry of Heterocyclic Compounds . Vol 25. Houlihan WI. Wiley; New York: 1972: 227
  • 62 Cabrera A, Sharma P, Ayala M, Rubio-Perez L, Amézquita-Valencia M. Tetrahedron Lett. 2011; 52: 6758
  • 63 Vuong TM. H, Bui T.-T, Sournia-Saquet A, Moreau A, Moineau-Chane Ching KI. Inorg. Chem. 2014; 53: 2841