Synthesis 2017; 49(03): 472-483
DOI: 10.1055/s-0036-1588607
short review
© Georg Thieme Verlag Stuttgart · New York

An Overview of the Synthesis of Highly Versatile N-Hydroxysuccinimide Esters

Anaïs Barré
a   Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
b   VFP Therapies, 15 rue François Couperin, 76000 Rouen, France   Email: cyril.papamicael@insa-rouen.fr   Email: vgembus@vfp-therapies.com
,
Mihaela-Liliana Ţînţaş
a   Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
,
Vincent Levacher
a   Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
,
Cyril Papamicaël*
a   Normandie Univ, COBRA, UMR 6014 et FR 3038; Univ Rouen; INSA Rouen; CNRS, IRCOF, 1 rue Tesnière, 76821 Mont Saint Aignan Cedex, France
,
Vincent Gembus*
b   VFP Therapies, 15 rue François Couperin, 76000 Rouen, France   Email: cyril.papamicael@insa-rouen.fr   Email: vgembus@vfp-therapies.com
› Author Affiliations
Further Information

Publication History

Publication Date:
23 September 2016 (online)


Abstract

N-Hydroxysuccinimide esters (NHS-esters) are important and widely used tools in various areas of chemistry including peptide synthesis, bioconjugate chemistry, functionalized materials and polymers. The usual strategy employed to prepare these active esters generally relies on the coupling reaction with a carboxylic acid and N-hydroxysuccinimide in the presence of a coupling agent. However, more recently, many other efficient strategies have emerged in the literature. This short review covers the literature devoted to the preparation of these valuable N-hydroxysuccinimide esters.

1 Introduction

2 N-Hydroxysuccinimide Coupling Reaction with Activated Carboxylic Acids

3 Carboxylic Acid Coupling Reaction with Activated N-Hydroxysuccinimide

4 Alcohol and Aldehyde Coupling Reaction with N-Hydroxysuccinimide under Oxidizing Conditions

5 Carbonylative Cross-Coupling Reaction

6 Conclusion

 
  • References

    • 1a Bodánszky M. Nature 1955; 175: 685
    • 1b Bodanszky M, Du Vigneaud V. Nature 1959; 183: 1324
  • 2 Nefkens GH. L, Tesser GI. J. Am. Chem. Soc. 1961; 83: 1263
    • 3a Anderson GW, Zimmerman JE, Callahan FM. J. Am. Chem. Soc. 1963; 85: 3039
    • 3b Anderson GW, Zimmerman JE, Callahan FM. J. Am. Chem. Soc. 1964; 86: 1839
  • 4 Pless J, Boissonnas RA. Helv. Chim. Acta 1963; 46: 1609
  • 5 Kisfaludy L, Löw M, Nyéki O, Szirtes T, Schőn I. Liebigs Ann. Chem. 1973; 1421
  • 6 Fujino M, Kobayashi S, Obayashi M, Fukuda T, Shinagawa S, Nishimura O. Chem. Pharm. Bull. 1974; 22: 1857
  • 7 Ahern TP, Navratil T, Vaughan K. Can. J. Chem. 1977; 55: 630
  • 8 Cline GW, Hanna SB. J. Am. Chem. Soc. 1987; 109: 3087
    • 9a Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ. Mol. Cell. Proteomics 2004; 3: 1154
    • 9b Abello N, Kerstjens HA. M, Postma DS, Bischoff R. J. Proteome Res. 2007; 6: 4770
  • 10 Asano S, Patterson JT, Gaj T, Barbas CF. III. Angew. Chem. Int. Ed. 2014; 53: 11783
    • 11a Pirrung MC, Biswas G, Ibarra-Rivera TR. Org. Lett. 2010; 12: 2402
    • 11b Matiadis D, Igglessi-Markopoulou O. Eur. J. Org. Chem. 2010; 31: 5989
  • 12 Gupta S, Das BC, Schafmeister CE. Org. Lett. 2005; 7: 2861
    • 13a Jakobsche CE, Parker CG, Tao RN, Kolesnikova MD, Douglass EF. Jr, Spiegel DA. ACS Chem. Biol. 2013; 8: 2404
    • 13b Kim S, Lim C, Lee S, Lee S, Cho H, Lee J.-Y, Shim DS, Park HD, Kim S. ACS Comb. Sci. 2013; 15: 208
    • 13c Niphakis MJ, Cognetta III AB, Chang JW, Buczynski MW, Parsons LH, Byrne F, Burston JJ, Chapman V, Cravatt BF. ACS Chem. Neurosci. 2013; 4: 1322
    • 13d Park S, Pai J, Han E.-H, Jun C.-H, Shin I. Bioconjugate Chem. 2010; 21: 1246

      See for examples:
    • 14a Vaidyanathan G, Affleck DJ, Zalutsky MR. Bioconjugate Chem. 1993; 4: 78
    • 14b Bhargava KK, Chervu LR. Biochem. Biophys. Res. Commun. 1987; 144: 323
    • 14c Yuanfang L, Chuanchu W. Pure Appl. Chem. 1991; 63: 427
    • 14d Liu Y, Liu G, Hnatowich DJ. Materials 2010; 3: 3204
  • 15 See for example: Bolton AE, Hunter WM. Biochem. J. 1973; 133: 529

    • See for examples:
    • 16a Holste A, Tholey A, Hung C.-W, Schaumloffel D. Anal. Chem. 2013; 85: 3064
    • 16b Tenório-Daussat CL, Hauser-Davis RA, Saint’Pierre TD, Tholey A, Schaumlöffel D. Microchem. J. 2015; 118: 238
  • 17 Winnard PJr, Chang F, Ruschowski M, Mardirossian G, Hnatowich DJ. Nucl. Med. Biol. 1997; 24: 425
  • 18 Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H. Angew. Chem. Int. Ed. 2008; 47: 9618
  • 19 Patel N, Davies MC, Hartshorne M, Heaton RJ, Roberts CJ, Tendler SJ. B, Williams PM. Langmuir 1997; 13: 6485
    • 20a Wagner P, Hegner M, Kernen P, Zaugg F, Semenza G. Biophys. J. 1996; 70: 2052
    • 20b Lim CY, Owens NA, Wampler RD, Ying Y, Granger JH, Porter MD. Langmuir 2014; 30: 12868
    • 21a Theato P. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 6677
    • 21b Das A, Theato P. Chem. Rev. 2016; 116: 1434
  • 22 Paquet A. Can. J. Chem. 1976; 54: 733
    • 23a Williams A, Ibrahim IT. Chem. Rev. 1981; 81: 589
    • 23b Encyclopedia of Reagents for Organic Synthesis . Vol. 4. Paquette LA. Wiley; New York: 1995: 2430
    • 23c Wang Y, Li S, Feng L, Nie C, Liu L, Lv F, Wang S. ACS Appl. Mater. Interfaces 2015; 7: 24110

      For leading references, see:
    • 24a Frankel M, Ladkany D, Gilon C, Wolman Y. Tetrahedron Lett. 1966; 39: 4765
    • 24b Meienhofer J. Liebigs Ann. Chem. 1966; 231
    • 24c Wünsch E, Zwick A. Chem. Ber. 1966; 99: 105

    • For recent uses, see for example:
    • 24d Trukhin DV, Rogozhnikova OY, Troitskaya TI, Vasiliev VG, Bowman MK, Tormyshev VM. Synlett 2016; 27: 893
    • 24e Chen D.-Z, Jing C.-X, Cai J.-Y, Wu JB, Wang S, Yin JL, Li X.-N, Li L, Hao X.-J. J. Nat. Prod. 2016; 79: 180
    • 24f Zhan N, Palui G, Merkl J.-P, Mattoussi H. J. Am. Chem. Soc. 2016; 138: 3190
    • 24g Bertuzzi G, Locatelli E, Colecchia D, Calandro P, Bonini BF, Chandanshive JZ, Mazzanti A, Zani P, Chiariello M, Comes Franchini M. Eur. J. Med. Chem. 2016; 117: 1
    • 24h Inouye M, Yoshizawa A, Shibata M, Yonenaga Y, Fujimoto K, Sakata T, Matsumoto S, Shiro M. Org. Lett. 2016; 18: 1960
    • 24i Desbois N, Michelin C, Chang Y, Stupar V, Bonnaud M, Pacquelet S, Gros CP. Tetrahedron Lett. 2015; 56: 7128

      For a leading reference, see:
    • 25a Findeis MA, Kaiser ET. J. Org. Chem. 1989; 54: 3478

    • For recent uses, see for example:
    • 25b Smith LM. II, Orwat MJ, Hu Z, Han W, Wang C, Rossi KA, Gilligan PJ, Pabbisetty KB, Osuna H, Corte JR, Rendina AR, Luettgen JM, Wong PC, Narayanan R, Harper TW, Bozarth JM, Crain EJ, Wei A, Ramamurthy V, Morin PE, Xin B, Zheng J, Seiffert DA, Quan ML, Lam PY. S, Wexler RR, Pinto DJ. P. Bioorg. Med. Chem. Lett. 2016; 26: 472
    • 25c Cornella J, Edwards JT, Qin T, Kawamura S, Wang J, Pan C.-M, Gianatassio R, Schmidt M, Eastgate MD, Baran PS. J. Am. Chem. Soc. 2016; 138: 2174
    • 25d Choi S.-H, Jeong W.-J, Choi S.-J, Lim Y.-B. Bioorg. Med. Chem. Lett. 2015; 25: 5335

      For leading references, see:
    • 26a Ando S, Kato T, Izumiya N. Int. J. Pept. Prot. Res. 1985; 25: 15
    • 26b Aoyagi H, Mihara H, Lee S, Kato T, Ueno T, Izumiya N. Int. J. Pept. Prot. Res. 1985; 25: 144
    • 26c Tamaki M, Okitsu T, Araki M, Sakamoto H, Takimoto M, Muramatsu I. Bull. Chem. Soc. Jpn. 1985; 58: 531

    • For recent uses, see for example:
    • 26d Kimura H, Sampei S, Matsuoka D, Harada N, Watanabe H, Arimitsu K, Ono M, Saji H. Bioorg. Med. Chem. Lett. 2016; 24: 2251
    • 26e Luan L, Fang W, Liu W, Tian M, Ni Y, Chen X, Yu X. Org. Biomol. Chem. 2016; 14: 2985
    • 26f Liu Y, Shen X, Shou H, Wang Y, Deng L. Appl. Surf. Sci. 2016; 370: 270
    • 26g Mujumdar P, Teruya K, Tonissen KF, Vulo D, Supuran CT, Peat TS, Poulsen S.-A. J. Med. Chem. 2016; 59: 5462

      See for examples:
    • 27a Sehgal D, Vijay IK. Anal. Biochem. 1994; 218: 87
    • 27b Weygand F, Hoffman D, Wünsch E. Z. Naturforsch. 1966; 21b: 426
    • 27c Davies JS, Mohammed AK. J. Chem. Soc., Perkin Trans. 1 1981; 2982
  • 28 Anderson GW, Callahan FM, Zimmerman JE. J. Am. Chem. Soc. 1967; 89: 178
    • 29a Ogura H, Kobayashi T, Shimizu K, Kawabe K, Takeda K. Tetrahedron Lett. 1979; 20: 4745
    • 29b Ogura H, Takeda K. Nippon Kagaku Kaishi 1981; 5: 836
  • 30 Pereira D, ThatHai T, Nelson D. Synth. Commun. 1998; 28: 4019
  • 31 Booth C, Bushby RJ, Cheng Y, Evans SD, Liu Q, Zhang H. Tetrahedron 2001; 57: 9859
  • 32 Kim S, Ko YK. J. Chem. Soc., Chem. Commun. 1985; 473
  • 33 Kim S, Lee JI, Ko YK. Tetrahedron Lett. 1984; 25: 4943
  • 34 Takeda K, Sawada I, Suzuki A, Ogura H. Tetrahedron Lett. 1983; 24: 4451
  • 35 Takeda K, Ogura H. J. Synth. Org. Chem. Jpn. 1986; 12: 1182
  • 36 Kometani T, Fitz T, Watt DS. Tetrahedron Lett. 1986; 27: 919

    • See for example:
    • 37a Senthilvelan A, Muthian S, Yepez G, Kore AR. Tetrahedron Lett. 2016; 57: 2006
    • 37b Mongkhontreerat S, Andrén OC. J, Boujemaoui A, Malkoch M. J. Polym. Sci., Part A: Polym. Chem. 2015; 53: 2431
    • 37c Rybina A, Thaler B, Krämer R, Herten D.-P. Phys. Chem. Chem. Phys. 2014; 16: 19550
    • 38a Fujii T, Kimura T, Sakakibara S. Bull. Chem. Soc. Jpn. 1976; 49: 1595
    • 38b Brush CK. US Patent 5583236, 1996
    • 38c Adamczyk M, Fishpaugh J, Mattingly PG, Shreder K. Bioorg. Med. Chem. Lett. 1998; 8: 3595
    • 38d Adamczyk M, Chen Y.-Y, Fishpaugh JR, Mattingly PG, Pan Y, Shreder K, Yu Z. Bioconjugate Chem. 2000; 11: 714
    • 38e Adamczyk M, Chen Y.-Y, Gebler JC, Johnson DD, Mattingly PG, Moore JA, Reddy RE, Wu J, Yu Z. Steroids 2000; 65: 295
  • 39 Rao TS, Nampalli S, Sekher P, Kumar S. Tetrahedron Lett. 2002; 43: 7793
    • 40a Leonard NM, Brunckova J. J. Org. Chem. 2011; 76: 9169
    • 40b Leonard NM, Brunckova J. Org. Prep. Proced. Int. 2012; 44: 180
    • 41a Kim M, Han K.-J. Synth. Commun. 2009; 39: 4467
    • 41b Han K.-J, Kim M. Org. Prep. Proced. Int. 2014; 46: 370
    • 42a Kocz R, Roestamadji J, Mobashery S. J. Org. Chem. 1994; 59: 2913
    • 42b Montalbetti CA. G. N, Falque V. Tetrahedron 2005; 61: 10827
    • 42c Joullié MM, Lassen KM. ARKIVOC 2010; (viii): 189
  • 43 Knorr R, Trzeciak A, Bannwarth W, Gillessen D. Tetrahedron Lett. 1989; 30: 1927
  • 44 Bailén MA, Chinchilla R, Dodsworth DJ, Nájera C. Tetrahedron Lett. 2002; 43: 1661
  • 45 Grochowski E, Jurczak J. Synthesis 1977; 277
  • 46 Ogura H, Nagai S, Takeda K. Tetrahedron Lett. 1980; 21: 1467
  • 47 Pöchlauer P, Hendel W. Tetrahedron 1998; 54: 3489
  • 48 Schulze A, Giannis A. Adv. Synth. Catal. 2004; 346: 252
  • 49 Tan B, Toda N, Barbas CF. III. Angew. Chem. Int. Ed. 2012; 51: 12538
  • 50 Pilo M, Porcheddu A, De Luca L. Org. Biomol. Chem. 2013; 11: 8241
  • 51 Wang G, Yu Q.-Y, Wang J, Wang S, Chen S.-Y, Yu X.-Q. RSC Adv. 2013; 3: 21306
  • 52 Lou R, VanAlstine M, Sun X, Wentland MP. Tetrahedron Lett. 2003; 44: 2477
  • 53 Hu Y, Liu J, Lü Z, Luo X, Zhang H, Lan Y, Lei A. J. Am. Chem. Soc. 2010; 132: 3153 ; and references cited therein
  • 54 De Almeida AM, Andersen TL, Lindhardt AT, de Almeida MV, Skrydstrup T. J. Org. Chem. 2015; 80: 1920
  • 55 The use of [Pd(cinnamyl)Cl]2 was reported in the palladium-catalyzed alkoxycarbonylation of phenols to form esters through in situ formed aryl nonaflates, see: Wu X.-F, Neumann H, Beller M. Chem. Eur. J. 2012; 18: 3831
  • 56 Barré A, Ţînţaş M.-L, Alix F, Gembus V, Papamicaël C, Levacher V. J. Org. Chem. 2015; 80: 6537
  • 57 Pace V, Hoyos P, Castoldi L, Domínguez de María P, Alcántara AR. ChemSusChem 2012; 5: 1369