Synlett 2017; 28(07): 847-850
DOI: 10.1055/s-0036-1588401
letter
© Georg Thieme Verlag Stuttgart · New York

Metal-Free Visible-Light-Mediated Desulfurization and Aromatization of Dihydropyrimidine-2-thiones for Synthesis of 2-Unsubstituted Pyrimidines

Tian-Yao Yang
a   Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education China, Gansu 730070, P. R. of China
b   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: wangxicun@nwnu.edu.cn   Email: quanzhengjun@hotmail.com
,
Xi-Cun Wang*
a   Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education China, Gansu 730070, P. R. of China
b   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: wangxicun@nwnu.edu.cn   Email: quanzhengjun@hotmail.com
,
Zheng-Jun Quan*
a   Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education China, Gansu 730070, P. R. of China
b   Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu 730070, P. R. of China   Email: wangxicun@nwnu.edu.cn   Email: quanzhengjun@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 02 November 2016

Accepted after revision: 31 December 2016

Publication Date:
19 January 2017 (online)


Abstract

The visible-light-mediated aerobic desulfurization and aromatization of Biginelli 3,4-dihydropyrimidine-2(1H)-thiones for a one-step synthesis of 2-unsubstituted pyrimidines was established. The protocol uses molecular oxygen as an inexpensive oxidant, with visible-light irradiation, and eosin B as an organophotoredox catalyst.

Supporting Information

 
  • References and Notes

    • 1a Biginelli P. Gazz. Chim. Ital. 1893; 23: 360
    • 1b Kappe CO. Tetrahedron 1993; 49: 6937
    • 1c Kappe CO. Acc. Chem. Res. 2000; 33: 879
    • 1d Kappe CO, Stadler A. Org. React. (Hoboken, NJ U. S.) 2004; 63: 1
    • 1e Dallinger D, Stadler A, Kappe CO. Pure Appl. Chem. 2004; 76: 1017
    • 1f Gong L.-Z, Chen X.-H, Xu X.-Y. Chem. Eur. J. 2007; 13: 8920
    • 1g Kolosov MA, Orlov VD. Mol. Diversity 2009; 13: 5
    • 1h Quan Z.-J, Zhang Z, Da Y.-X, Wang X.-C. Youji Huaxue 2009; 29: 876
    • 2a Dodge JA, Trujillo JI, Presnell M. J. Org. Chem. 1994; 59: 234
    • 2b Ahn C, Correia R, DeShong P. J. Org. Chem. 2002; 67: 1751
    • 2c Ahn C, Correia R, DeShong P. J. Org. Chem. 2003; 68: 1176
    • 2d Guanti G, Banfi L, Basso A, Bevilacqua L, Riva R. Tetrahedron: Asymmetry 2004; 15: 2889
  • 3 Atwal KS, Swanson BN, Unger SE, Floyd DM, Moreland S, Hedberg A, O’Reilly BC. J. Med. Chem. 1991; 34: 806
  • 4 Rovnyak GC, Atwal KS, Hedberg A, Kimball SD, Moreland S, Gougoutas JZ, Schwartz J, Malley MF. J. Med. Chem. 1992; 35: 3254
  • 5 Barrow JC, Nantermet PG, Selnick HG, Glass KL, Rittle KE, Gilbert KF, Steele TG, Homnick CF, Freidinger RM, Ransom RW, Kling P, Reiss D, Broten TP, Schorn TW, Chang RS. L, O’Malley SS, Olah TV, Ellis JD, Barrish A, Kassahun K, Leppert P, Nagarathnam D, Forray C. J. Med. Chem. 2000; 43: 2703
  • 6 Kappe CO. Eur. J. Med. Chem. 2000; 35: 1043
  • 7 Deres K, Schröder CH, Paessens A, Goldman S, Hacker HJ, Weber O, Krämer T, Niewöhner U, Pleiss U, Stoltefuss J, Graef E, Koletzki D, Masantschek RN. A, Reimann A, Jaeger R, Gross R, Beckermann B, Schlemmer K.-H, Haebich D, Rübsamen-Waigmann H. Science 2003; 299: 893
  • 8 Heys L, Moore CG, Murphy P. J. Chem. Soc. Rev. 2000; 29: 57
  • 9 Patil AD, Kumar NV, Kokke WC, Bean MF, Freyer AJ, De Brosse C, Mai S. J. Org. Chem. 1995; 60: 1182
    • 10a Vanden Eynde JJ, Audiart N, Canonne V, Michel S, Van Haverbeke Y, Kappe CO. Heterocycles 1997; 45: 1967
    • 10b Puchala A, Belaj F, Bergman J, Kappe CO. J. Heterocycl. Chem. 2001; 38: 1345
    • 10c Kappe CO, Kappe T. J. Heterocycl. Chem. 1989; 26: 1555
  • 11 Kim SS, Choi BS, Lee JH, Lee KK, Lee TH, Kim YH, Shin H. Synlett 2009; 599
    • 12a Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
    • 12b Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
    • 12c Xuan J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 6828
    • 12d Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 12e Hari DP, König B. Angew. Chem. Int. Ed. 2013; 52: 4734
    • 12f Beatty JW, Stephenson CR. J. Acc. Chem. Res. 2015; 48: 1474
    • 12g Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
    • 12h Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Soc. Rev. 2016; 45: 2044
  • 13 Nicewicz DA, MacMillan DW. C. Science 2008; 322: 77
  • 14 Ischay MA, Anzovino ME, Du J, Yoon TP. J. Am. Chem. Soc. 2008; 130: 12886
  • 15 Narayanam JM. R, Tucker JW, Stephenson CR. J. J. Am. Chem. Soc. 2009; 131: 8756
    • 17a Memarian HR, Farhadi A. Monatsh. Chem. 2009; 140: 1217
    • 17b Memarian HR, Farhadi A, Sabzyan H, Soleymani M. J. Photochem. Photobiol., A 2010; 209: 95
    • 17c Liu Q, Li Y.-N, Zhang H.-H, Chen B, Tung C.-H, Wu L.-Z. J. Org. Chem. 2011; 76: 1444
    • 17d Liu Q, Wang L, Ma Z.-G, Wei X.-J, Meng Q.-Y, Yang D.-T, Du S.-F, Chen Z.-F, Wu L.-W. Green Chem. 2014; 16: 3752
    • 18a Heitz DR, Rizwan K, Molander GA. J. Org. Chem. 2016; 81: 7308
    • 18b Memarian HR, Soleymani M, Sabzyan H, Bagherzadeh M, Ahmadi H. J. Phys. Chem. A 2011; 115: 8264
  • 20 Keshari T, Yadav AK, Srivastava VP, Yadav LD. S. Green Chem. 2014; 16: 3986
    • 21a Keshari K, Yadav VK, Srivastava VP, Yadav LD. S. Green Chem. 2014; 16: 3992
    • 21b Gao X.-F, Du J.-J, Liu Z, Guo J. Org. Lett. 2016; 18: 1166
    • 22a Li Y, Hu B, Dong W, Xie X, Wan J, Zhang Z. J. Org. Chem. 2016; 81: 7036
    • 22b Yu J.-T, Hu W.-M, Peng H, Cheng J. Tetrahedron Lett. 2016; 57: 4109
  • 23 Ethyl 4-Methyl-6-phenylpyrimidine-5-carboxylate (3a); Typical Procedure An oven-dried tube was charged with ethyl 6-methyl-4-phenyl-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate (1a; 0.276 g, 1 mmol), eosin B (2; 0.012 g, 0.02 mmol), and DMF (3 mL). The stirred mixture was irradiated with a 15 W blue light for 12 h at r.t., while the reaction was monitored by TLC. The reaction was then quenched with sat. aq NH4Cl (3 mL) and the mixture was extracted with EtOAc (3 × 15 mL). The organic layers were combined, washed with brine, and dried (MgSO4). The crude product was purified by column chromatography [silica gel, PE–EtOAc (1:15)] to give a yellow oil; yield: 214 mg (0.88 mmol, 88%). 1H NMR (600 MHz, CDCl3): δ = 9.15 (s, 1 H), 7.65 (d, J = 7.6 Hz, 2 H), 7.46 (d, J = 7.4 Hz, 2 H), 4.20 (q, J = 7.2 Hz, 2 H), 2.63 (s, 3 H), 1.08 (t, J = 7.2 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.67, 164.95, 163.20, 158.06, 137.53, 130.13, 128.58, 128.26, 125.95, 61.93, 22.56, 13.62. HRMS (ESI+): m/z [M + H]+ calcd for C14H15N2O2: 243.1128; found: 243.1123.