Synthesis 2017; 49(04): 705-723
DOI: 10.1055/s-0036-1588339
review
© Georg Thieme Verlag Stuttgart · New York

Spirocyclic Orthoesters, Orthothioesters and Orthoaminals in the Synthesis and Structural Modification of Natural Products

Kjell Undheim
Department of Chemistry, University of Oslo, 0315 Oslo, Norway   Email: kjell.undheim@kjemi.uio.no
› Author Affiliations
Further Information

Publication History

Received: 25 May 2016

Accepted after revision: 02 August 2016

Publication Date:
30 December 2016 (online)


Abstract

Spirocyclic scaffolds are embedded in several families of natural products. In the spirocyclic structure, the two rings constituting the spirane are linked through a common carbon atom. This review covers families of compounds that have three heteroatoms directly attached to the spirocarbon. Common heteroatoms are nitrogen, oxygen and sulfur, constituting spirocyclic orthoesters, ortholactones, orthothioesters and orthoaminals, or combinations thereof. Embedded spirocyclic scaffolds introduce steric restrictions and thereby influence bioactivity. In polymer chemistry, synthetic ortholactones may serve as monomers. Synthesis of anomeric spironucleosides will afford molecules where the basic unit is in a fixed conformation around the N-glycosidic bond. Synthesis of glycosidic and 2-deoxyglycosidic ortholactones in disaccharides and regioselective reductive cleavage of cyclic orthoesters result in stereoselective β-(1→4)-glycosidic bond formation. Pyranose and furanose free-radical chemistry via spirocyclic ­orthoesters can be applied in the generation of carbacyclic sugars and nucleosides.

1 Introduction

2 Heteraspiro[3.m]alkanes

3 Heteraspiro[4.m]alkanes

4 Heteraspiro[5.m]alkanes

5 Conclusion

 
  • References

  • 1 Sannigrahi M. Tetrahedron 1999; 55: 9007
  • 2 Grygorenko OO, Radchenko DS, Volochnyuk DM, Tolmachev AA, Komarov IV. Chem. Rev. 2011; 111: 5506
  • 3 Kohta S, Deb AC, Lahiri K, Manivannan E. Synthesis 2009; 165
  • 4 Cala L, Fananás FJ, Rodríguez F. Org. Biomol. Chem. 2014; 12: 5324
  • 5 Palmes JA, Aponick A. Synthesis 2012; 44: 3699
  • 6 Paquette LA. Aust. J. Chem. 2004; 57: 7
  • 7 Dake G. Tetrahedron 2006; 62: 3467
  • 8 Undheim K. Synthesis 2014; 46: 1957
  • 9 Undheim K. Synthesis 2015; 47: 2497
  • 10 Lebel H, Grenon M. Science of Synthesis . Vol. 22. Charette AB, Thomas EJ. Georg Thieme Verlag; Stuttgart: 2005: 669
  • 11 Kantlehner W. Science of Synthesis. Vol. 22. Thomas EJ. Georg Thieme Verlag; Stuttgart: 2005: 795
  • 12 Fukuda H, Endo T. Tetrahedron Lett. 1988; 29: 2327
  • 13 Nishio T, Shiwa K, Sakamoto M. Helv. Chim. Acta 2002; 85: 2383
  • 14 Dabholkar VV, Wadkar MM. Ind. J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 2009; 48: 1027
  • 15 Giesecke H, Hocker J. Synthesis 1977; 806
  • 16 Rigby JH, Wang Z. Org. Lett. 2002; 4: 4289
  • 17 Schwan AL, Warkentin J. Can. J. Chem. 1988; 66: 2285
  • 18 Jeong W, Hedrick JL, Waymouth RM. J. Am. Chem. Soc. 2007; 129: 8414
  • 19 Ferris JP, Devadas B. J. Org. Chem. 1987; 52: 2355
  • 20 Scrimin P, Cavicchioni G, D’Angeli F, Goldblum A, Maran F. J. Chem. Soc., Perkin Trans. 1 1988; 43
  • 21 Pihko PM, Koskinen AM. P. J. Org. Chem. 1999; 64: 652
  • 22 Nikolaev VV, Linden A, Heimgartner H. Helv Chim. Acta 2007; 90: 2330
  • 23 Sandham DA, Taylor RJ, Carey JS, Fässler A. Tetrahedron Lett. 2000; 41: 10091
  • 24 Dondoni A, Lathauwer GD, Perrone D. Tetrahedron Lett. 2001; 42: 4819
  • 25 Capriati V, Degennaro L, Favia R, Florio S, Luisi R. Org. Lett. 2002; 4: 1551
  • 26 Chatgilialoglu C, Giimisis T, Spada GP. Chem. Eur. J. 1999; 5: 2866
  • 27 Kittaka A, Kato H, Tanaka H, Nonaka Y, Amano M, Nakamura KT, Miyasaka T. Tetrahedron 1999; 55: 5319
  • 28 Gimisis T, Castellari C, Chatgilialoglu C. Chem. Commun. 1997; 2089
  • 29 Bodenbenner K. Chem. Ber. 1959; 92: 183
  • 30 Endo T, Okawara M, Yamazaki N, Bailey WJ. J. Polym. Sci. Polym. Chem. Ed. 1981; 19: 1283
  • 31 Klemm E, Kottner N.. J. Polymer. Sci. A: Polym. Chem. 1994; 32: 2793
  • 32 Egle I, Lai W.-Y, Moore PA, Renton P, Tidwell TT, Zhao D.-c. J. Org. Chem. 1997; 62: 18
  • 33 Lemieux RU, Detert DH. Can. J. Chem. 1968; 46: 1039
  • 34 Fu C, Linden A, Heimgartner H. Helv. Chim. Acta 2004; 87: 2296
  • 35 Cui Y, Villafane LA, Clausen DJ, Floreancig PE. Tetrahedron 2013; 69: 7618
  • 36 Corey EJ, Beams DJ. J. Am. Chem. Soc. 1973; 95: 5829
  • 37 Delaney PA, Johnstone RA. W, Leonard PA, Regan P. J. Chem. Soc., Perkin Trans. 1 1991; 285
  • 38 Montero VA, Hernandes IT, de Pascual Teresa J, Moran JR, Olabarrieta R. J. Org. Chem. 1989; 54: 3664
  • 39 Ulrich H, Tucker B, Stuber fA, Sayigh AA. R. J. Org. Chem. 1968; 33: 3928
  • 40 Herrmann G, Süss-Fink G. Chem. Ber. 1985; 118: 3959
  • 41 Heitz H, Herrmann G, Süss-Fink G. Chem. Ber. 1986; 119: 2895
  • 42 Walter H. Heterocycles 1995; 41: 2427
  • 43 Szostak M, Aubé J. J. Am. Chem. Soc. 2010; 132: 2530
  • 44 Hayes R, Li K.-D, Leeming P, Wallace TW, Williams RC. Tetrahedron 1999; 55: 12907
  • 45 Avery MA, Choudhry SC, Dhingra OP, Gray BD, Kang M.-c, Kuo S.-c, Vedananda TR, White JD, Whittle AJ. Org. Biomol. Chem. 2014; 12: 9116
  • 46 Saucy G, Borer R, Trullinger DP, Jones JB, Lok KP. J. Org. Chem. 1977; 42: 3206
  • 47 Brady RF, Simon FE. J. Polym. Sci. A: Polym. Chem. 1987; 25: 231
  • 48 Wolff JJ, Frenking G, Harms K. Chem. Ber. 1991; 124: 551
  • 49 Baddeley KL, Cao Q, Muldoon MJ, Cook MJ. Chem. Eur. J. 2015; 21: 7726
  • 50 Nicolaou KC, Mitchell HJ, Fylaktakidou KC, Rodrigues RM, Suzuki H. Chem. Eur. J. 2000; 6: 3116
  • 51 Nicolaou KC, Mitchell HJ, Fylactakidou KC, Suzuki H, Rodriguez RM. Z. Angew. Chem. Int. Ed. 2000; 39: 1089
  • 52 Buchanan JG, Clelland AP. W, Wightman RH, Johnson T, Rennie RA. C. Carbohydr. Res. 1992; 237: 295
  • 53 Jimori T, Ohtake H, Ikegami S. Tetrahedron Lett. 1997; 38: 3415
  • 54 Bourke DG, Collins DJ, Hibberd AI, McLeod MD. Aust. J. Chem. 1996; 49: 425
  • 55 Collins DJ, Hibberd AI, Skelton BW, White AH. Aust. J. Chem. 1998; 51: 681
  • 56 Tazaki M, Hieda T, Maeda H, Nagahama S, Jyo A. Heteroat. Chem. 1998; 9: 281
  • 57 Fang J.-M, Hong B.-C. J. Org. Chem. 1987; 52: 3162
  • 58 Koch SC. C, Chamberline AR. J. Org. Chem. 1993; 58: 2725
  • 59 Dziadulewics E, Giles M, Moss WO, Gallagher H, Harman M, Hursthouse MB. J. Chem. Soc., Perkin Trans. 1 1989; 1793
  • 60 Moss WO, Bradbury RH, Hales NJ, Gallagher T. J. Chem. Soc., Perkin Trans. 1 1992; 1901
  • 61 Nakada M, Kobayashi S, Iwasaki S, Ohno M. Tetrahedron Lett. 1993; 34: 103
  • 62 Hsu Y.-G, Lin W.-Y, Hsieh W.-L, Tsai S.-Y. J. Polym. Sci. A: Polym. Chem. 2012; 50: 720
  • 63 Jaurand G, Beau J.-M, Sinay P. J. Chem. Soc., Chem. Commun. 1982; 701
  • 64 Ohtake H, Li X.-L, Shiro M, Ikegami S. Tetrahedron 2000; 56: 7109
  • 65 Suzuki K, Masuda T, Fukazawa Y, Tsuchihashi G.-i. Tetrahedron Lett. 1986; 27: 3661
  • 66 Hatanaka M. Tetrahedron Lett. 1987; 28: 83
  • 67 Lee J.-W, List B. J. Am. Chem. Soc. 2012; 134: 18245
  • 68 Lee T.-J, Holtz WJ, Smith RL. J. Org. Chem. 1982; 47: 4750