Synlett 2016; 27(20): 2826-2830
DOI: 10.1055/s-0036-1588316
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Carbamoyl Azides via Palladium-Catalysed Azidocarbonylation of Haloarenes Using N-Formylsaccharin as a CO Surrogate

Vinod K. Yadav
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Email: ldsyadav@hotmail.com
,
Vishnu P. Srivastava
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Email: ldsyadav@hotmail.com
,
Lal Dhar S. Yadav*
Green Synthesis Lab, Department of Chemistry, University of Allahabad, Allahabad 211002, India   Email: ldsyadav@hotmail.com
› Author Affiliations
Further Information

Publication History

Received: 06 August 2016

Accepted after revision: 27 August 2016

Publication Date:
19 September 2016 (online)


Abstract

A highly efficient one-pot synthesis of carbamoyl azides from haloarenes and sodium azide has been developed. The protocol involves palladium-catalysed azidocarbonylation of haloarenes utilizing N-formylsaccharin as a CO source to form acyl azides, which undergo in situ Curtius rearrangement to afford the desired carbamoyl azides. N-Formylsaccharin is an easy-to-handle solid alternative to CO gas.

 
  • References and Notes

    • 1a Gu L, Jinb C, Liua J. Green Chem. 2015; 17: 3733
    • 1b Gehrtz PH, Hirschbeck V, Fleischer I. Chem. Commun. 2015; 51: 12574
    • 1c Wu L, Liu Q, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2014; 53: 6310
    • 1d Miloserdov FM, McMullin CL, Belmonte MM, Buchholz JB, Bakhmutov VI, Macgregor SA, Grushin VV. Organometallics 2014; 33: 736
    • 1e Gadge ST, Bhanage BM. RSC Adv. 2014; 4: 10367
    • 1f Dahl K, Schou M, Amini N, Halldin C. Eur. J. Org. Chem. 2013; 1228
    • 1g Ueda T, Konishi H, Manabe K. Angew. Chem. Int. Ed. 2013; 52: 8611
    • 1h Ueda T, Konishi H, Manabe K. Org. Lett. 2013; 15: 5370
    • 1i Miloserdov FM, Grushin VV. Angew. Chem. Int. Ed. 2012; 51: 3668
    • 2a Schoenberg A, Bartoletti I, Heck RF. J. Org. Chem. 1974; 39: 3318
    • 2b Schoenberg A, Heck RF. J. Org. Chem. 1974; 39: 3327
    • 2c Schoenberg A, Heck RF. J. Am. Chem. Soc. 1974; 96: 7761
    • 3a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 3b Roy S, Roy S, Gribble GW. Tetrahedron 2012; 68: 9867
    • 3c Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
    • 3d Magano J, Dunetz JR. Chem. Rev. 2011; 111: 2177
    • 3e Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
    • 3f Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
    • 3g Barnard CF. J. Organometallics 2008; 27: 5402
    • 3h Sergeev AG, Spannenberg A, Beller M. J. Am. Chem. Soc. 2008; 130: 15549
    • 3i Baillargeon VP, Stille JK. J. Am. Chem. Soc. 1986; 108: 452
    • 3j Pri-Bar I, Buchman O. J. Org. Chem. 1984; 49: 4009
    • 3k Baillargeon VP, Stille JK. J. Am. Chem. Soc. 1983; 105: 7175
  • 4 Morimoto T, Kakiuchi K. Angew. Chem. Int. Ed. 2004; 43: 5580
    • 5a Christensen SH, Olsen EP. K, Rosenbaum J, Madsen R. Org. Biomol. Chem. 2015; 13: 938
    • 5b Verendel JJ, Nordlund M, Andersson PG. ChemSusChem 2013; 6: 426
    • 5c Jo E.-A, Lee J.-H, Jun C.-H. Chem. Commun. 2008; 5779
    • 6a Mura MG, Luca LD, Giacomelli G, Porcheddu A. Adv. Synth. Catal. 2012; 354: 3180
    • 6b Jiang L.-B, Li R, Li H.-P, Qi X, Wu X.-F. ChemCatChem 2016; 8: 1788
    • 6c Qi X, Li C.-L, Jiang L.-B, Zhang W.-Q, Wu X.-F. Catal. Sci. Technol. 2016; 6: 3099
    • 6d Qi X, Li C.-L, Wu X.-F. Chem. Eur. J. 2016; 22: 5835
    • 6e Qi X, Jiang L.-B, Li H.-P, Wu X.-F. Chem. Eur. J. 2015; 21: 17650
    • 6f Qi X, Jiang L.-B, Li C.-L, Li R, Wu X.-F. Chem. Asian J. 2015; 10: 1870
    • 6g Li W, Wu X.-F. Adv. Synth. Catal. 2015; 357: 3393
    • 6h Chen J, Natte K, Wu X.-F. Organomet. Chem. 2016; 803: 9
    • 6i Chen J, Feng J.-B, Natte K, Wu X.-F. Chem. Eur. J. 2015; 21: 16370
    • 6j Chen J, Natte K, Wu X.-F. Tetrahedron Lett. 2015; 56: 6413
    • 6k Li W, Wu X.-F. J. Org. Chem. 2014; 79: 10410
    • 7a Li B, Lee S, Shin K, Chang S. Org. Lett. 2014; 16: 2010
    • 7b Wang Y, Ren W, Li J, Wang H, Shi Y. Org. Lett. 2014; 16: 5960
    • 7c Kim D.-S, Park W.-J, Lee C.-H, Jun C.-H. J. Org. Chem. 2014; 79: 12191
    • 7d Profir I, Beller M, Fleischer I. Org. Biomol. Chem. 2014; 12: 6972
    • 7e Fleischer I, Jennerjahn R, Cozzula D, Jackstell R, Franke R, Beller M. ChemSusChem 2013; 6: 417
    • 7f Konishi H, Ueda T, Muto T, Manabe K. Org. Lett. 2012; 14: 4722
    • 8a Liu Q, Yuan K, Arockiam P.-B, Franke R, Doucet H, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2015; 54: 4493
    • 8b Kopfer A, Sam B, Breit B, Krische M. J. Chem. Sci. 2013; 4: 1876
    • 8c Uhlemann M, Doerfelt S, Börner A. Tetrahedron Lett. 2013; 54: 2209
    • 8d Cini E, Airiau E, Girard N, Mann A, Salvadori J, Taddei M. Synlett 2011; 199
    • 8e Makado G, Morimoto T, Sugimoto Y, Tsutsumi K, Kagawa N, Kakiuchi K. Adv. Synth. Catal. 2010; 352: 299
    • 9a Wu L, Liu Q, Fleischer I, Jackstell R, Beller M. Nat. Commun. 2014; 5: 3091
    • 9b Liu Q, Wu L, Fleischer I, Selent D, Franke R, Jackstell R, Beller M. Chem.-Eur. J. 2014; 20: 6809
    • 9c Ostapowicz TG, Schmitz M, Krystof M, Klankermayer J, Leitner W. Angew. Chem. Int. Ed. 2013; 52: 12119
    • 9d Tsuchiya K, Huang J.-D, Tominaga K.-I. ACS Catal. 2013; 3: 2865
    • 10a Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 10b Scriven EF. V, Turnbull K. Chem. Rev. 1988; 88: 297
    • 10c Lieber E, Minnis RL, Rao CN. R. Jr. Chem. Rev. 1965; 65: 377
    • 11a Oliveri-Mandala E, Noto F. Gazz. Chim. Ital. 1913; 43: 514
    • 11b Oliveri-Mandala E, Calderaro E. Gazz. Chim. Ital. 1913; 43: 538
    • 11c Lipschitz WL. J. Am. Chem. Soc. 1944; 66: 658
    • 11d Scott FL, Koczarski A. Reilly J. 1952; 170: 922
    • 11e Curtius T, Schmidt F. J. Prakt. Chem. 1923; 213: 177
    • 11f Curtius T, Burkhardt A. J. Prakt. Chem. 1898; 116: 205
  • 12 Deroose FD, De Clercq P. J. Org. Chem. 1995; 60: 321
  • 13 Curtius T. J. Prakt. Chem. 1894; 50: 275
    • 14a Bräse S, Banert K. Organic Azides: Syntheses and Applications. Wiley; Chichester: 2010
    • 14b Katritzky AR, Widyan K, Kirichenko K. J. Org. Chem. 2007; 72: 5802
    • 14c Bräse S, Gil C, Knepper K, Zimmermann V. Angew. Chem. Int. Ed. 2005; 44: 5188
    • 14d Bandgar BP, Pandit SS. Tetrahedron Lett. 2002; 43: 3413
    • 14e Gumaste VK, Bhawal BM, Deshmukh AR. Tetrahedron Lett. 2002; 43: 1345
    • 14f Shao H, Colucci M, Tong S, Zhang H, Castelhano AL. Tetrahedron Lett. 1998; 39: 7235
    • 14g Froeyen P. Phosphorous Sulfur Silicon Relat. Elem. 1994; 89: 57
    • 14h Canone P, Akssira M, Dahouh A, Kashmi H, Boumzebrra M. Heterocycles 1993; 36: 1305
    • 14i Arrieta A, Aizpurua JM, Palomo C. Tetrahedron Lett. 1984; 25: 3365
    • 14j Koyashi S, Kamiyama K, Iimori T, Ohno M. Tetrahedron Lett. 1984; 25: 2557
    • 14k Lago JM, Arrieta A, Palomo C. Synth. Commun. 1983; 13: 289
    • 15a Sarkar SD, Studer A. Org. Lett. 2010; 12: 1992
    • 15b Li X.-Q, Zhao X.-F, Zhang C. Synthesis 2008; 2589
    • 15c Arota ND, Akamanchi KG. Tetrahedron Lett. 2007; 48: 5661
    • 15d Bose DS, Reddy AV. N. Tetrahedron Lett. 2003; 44: 3543
    • 15e Lee JG, Kwak KH. Tetrahedron Lett. 1992; 33: 3165
    • 15f Reddy PS, Yadagiri P, Lumin S, Falck JR, Shin D.-S. Synth. Commun. 1988; 18: 545
    • 15g Elmorsy SS. Tetrahedron Lett. 1995; 36: 1341
  • 16 Shinomoto Y, Yoshimura A, Shimizu H, Yamazaki M, Zhdankin VV, Saito A. Org. Lett. 2015; 17: 5212
  • 17 Yadav VK, Srivastava VP, Yadav LD. S. Tetrahedron Lett. 2016; 57: 2502
    • 18a Feng P, Sun X, Su Y, Li X, Zhang L.-H, Shi X, Jiao N. Org. Lett. 2014; 16: 3388
    • 18b Li X.-Q, Wang W.-K, Zhanga C. Adv. Synth. Catal. 2009; 351: 2342
    • 18c García-Egido E, Fernández-Suárez M, Muñoz L. J. Org. Chem. 2008; 73: 2909
    • 19a Yadav VK, Srivastava VP, Yadav LD. S. Synlett 2016; 27: 427
    • 19b Keshari T, Kapoor R, Yadav LD. S. Eur. J. Org. Chem. 2016; 2695
    • 19c Yadav AK, Yadav LD. S. Tetrahedron Lett. 2016; 56: 686
    • 19d Yadav AK, Yadav LD. S. Synlett 2015; 26: 1026
    • 19e Yadav AK, Yadav LD. S. Org. Biomol. Chem. 2015; 13: 2606
    • 19f Yadav AK, Srivastava VP, Yadav LD. S. RSC Adv. 2014; 4: 24498
    • 19g Srivastava VP, Yadav AK, Yadav LD. S. Tetrahedron Lett. 2014; 55: 1788
    • 19h Srivastava VP, Yadav LD. S. Synlett 2013; 24: 2758
    • 20a Amatore C, Jutand A, Khalil F. ARKIVOC 2006; (iv): 38
    • 20b Amatore C, Jutand A, M’Barki MA. Organometallics 1992; 11: 3009
  • 21 General Procedure for the One-Pot Synthesis of Carbamoyl Azides 3: A mixture of haloarene 1 (1 mmol), sodium azide (3 mmol), Na2CO3 (2.5 mmol), Pd(OAc)2 (2 mol%), xantphos (5 mol%), N-formylsaccharin (2, 2.5 mmol), and DMF (3 mL) was stirred at 80 °C for 12–14 h under a nitrogen atmosphere (Scheme 3). After confirming the complete conversion of aldehyde into the corresponding carbamoyl azide (TLC), H2O (5 mL) was added and the mixture was extracted with EtOAc (3 × 5 mL). The combined organic phase was dried over anhyd Na2SO4, filtered and evaporated under reduced pressure. The resulting crude product was purified by silica gel chromatography using a mixture of hexane–EtOAc (4:1) as eluent to afford an analytically pure sample of product 3. All the compounds 3 are known and were characterized by comparison of their spectroscopic data with those reported in the literature (see refs. 15a, 18a and 21). Characterization data of selected compounds 3 are given below: Compound 3a (refs 18a and 15b): white solid; mp 84–86 °C (ref. 15b: 86–87 °C). 1H NMR (400 MHz, CDCl3): δ = 7.47 (d, J = 7.9 Hz, 2 H), 7.32–7.36 (m, 2 H), 7.10 (t, J = 7.3 Hz, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.08, 136.76, 129.25, 124.54, 119.38. HRMS (EI): m/z calcd for C7H6N4O: 162.0542; found: 162.0544. Compound 3c (refs 18a and 22): colourless solid; mp 103–104 °C (ref. 6: 103–105 °C). 1H NMR (400 MHz, CDCl3): δ = 7.42 (d, J = 8.7 Hz, 2 H), 7.32 (d, J = 8.7 Hz, 2 H), 6.89 (br s, 1 H). 13C NMR (100 MHz, CDCl3): δ = 154.16, 135.34, 129.86, 129.29, 120.47. HRMS (EI): m/z calcd for C7H5ClN4O: 196.0152; found: 196.0156. Compound 3e (ref 15b): white solid; mp 96–97 °C (ref. 15b: 95–96 °C). 1H NMR (400 MHz, CDCl3): δ = 7.20–7.22 (m, 2 H), 6.87–6.88 (m, 1 H), 6.85 (br s, 1 H), 6.68–6.78 (m, 1 H), 3.82 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.27, 154.13, 138.13, 129.78, 111.58, 110.31, 105.33, 55.29. HRMS (EI): m/z calcd for C8H8N4O2: 192.0647; found: 192.0644.
  • 22 Brandt JC, Wirth T. Beilstein J. Org. Chem. 2009; 5: No. 30