Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2017; 28(04): 504-508
DOI: 10.1055/s-0036-1588086
DOI: 10.1055/s-0036-1588086
letter
Copper-Catalyzed Double C–N Bond Formation for the Synthesis of Diverse Benzimidazoles from N-Alkyl-2-iodoaniline and Sodium Azide
Further Information
Publication History
Received: 05 September 2016
Accepted after revision: 05 October 2016
Publication Date:
15 November 2016 (online)

Abstract
An efficient approach to the synthesis of benzimidazole derivatives has been achieved by copper-catalyzed double C–N bonds formation of N-alkyl-2-iodoaniline and sodium azide. The reaction was supposed to proceed through copper-catalyzed tandem reaction of SNAr reaction, aerobic oxidation of C(sp3)–H bond and intramolecular C–N bond formation sequence. Structurally diverse 2-aryl, alkenyl and alkyl benzoimidazole derivatives were assembled by this methodology.
Key words
copper catalyst - C–N bond formation - benzimidazoles - tandem reaction - N-heterocyclic compoundsSupporting Information
- Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0036-1588086.
- Supporting Information
-
References and Notes
- 1a Kataoka M, Tatsuta M, Yasoshima K, Yura T, Urbahns K, Kiba A, Yamamoto N, Gupta JB, Hashimoto K. Bioorg. Med. Chem. Lett. 2005; 15: 805
- 1b Sabat M, Vanrens JC. L. M. J, Brugel TA, Maier J, Golebiowski A, De B, Easwaran V, Hsieh LC, Walter RL, Mekel MJ, Evdokimov A, Janusz MJ. Bioorg. Med. Chem. Lett. 2006; 16: 5973
- 1c Asensio JA, Gomez-Romero P. Fuel Cells 2005; 5: 336
- 1d Schwartz G, Fehse K, Pfeiffer M, Walzer K, Leo K. Appl. Phys. Lett. 2006; 89: 083509
- 2a Denny WA, Rewcastle GW, Bauley BC. J. Med. Chem. 1990; 33: 814
- 2b Hu L, Kully ML, Boykin DW, Abood N. Bioorg. Med. Chem. Lett. 2009; 19: 3374
- 2c Seyhan E, Sultan N, Nilgun A, Noyanalpan N. Arzneim. Forsch. 1997; 47: 410
- 2d Porcari AR, Devivar RV, Kucera LS, Drach JC, Townsend LB. J. Med. Chem. 1998; 41: 1252
- 2e Migawa MT, Girardet JL, Walker JA, Koszalka GW, Chamberlain SD, Drach JC, Townsend LB. J. Med. Chem. 1998; 41: 1242
- 2f Tamm I. Science 1957; 126: 1235
- 3a Singh N, Jang DO. Org. Lett. 2007; 9: 1991
- 3b Chaudhuri P, Ganguly B, Bhattacharya S. J. Org. Chem. 2007; 72: 1912
- 3c Sannigrahi A, Arunbabu D, Sankar RM, Jana T. Macromolecules 2007; 40: 2844
- 3d Ooyama Y, Nakamura T, Yoshida K. New J. Chem. 2005; 29: 447
- 4a Bahrami K, Khodaei MM, Naali F. J. Org. Chem. 2008; 73: 6835
- 4b Maiti DK, Halder S, Pandit P, Chatterjee N, Joarder DD, Pramanik N, Saima Y, Patra A, Maiti PK. J. Org. Chem. 2009; 74: 8086
- 4c Chari MA, Shobha PS. D, Mukkanti K. J. Heterocycl. Chem. 2010; 47: 153
- 4d Carvalho LC.R, Fernandes E, Marques MM. B. Chem. Eur. J. 2011; 17: 12544
- 4e Hein DW, Alheim RJ, Leavitt JJ. J. Am. Chem. Soc. 1957; 79: 427
- 4f Lee Y.-S, Cho Y.-H, Lee S, Bin J.-K, Yang J, Chae G, Cheon C.-H. Tetrahedron 2015; 71: 532
- 4g Lee Y.-S, Cheon C.-H. Adv. Synth. Catal. 2015; 357: 2951
- 5a Peng J, Ye M, Zong C, Hu F, Feng L, Wang X, Wang Y, Chen C. J. Org. Chem. 2011; 76: 716
- 5b Zou B, Yuan Q, Ma DW. Angew. Chem. Int. Ed. 2007; 46: 2598
- 5c Zheng N, Anderson KW, Huang X, Nguyen HN, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 7509
- 5d Brain CT, Steer JT. J. Org. Chem. 2003; 68: 6814
- 5e Hirano K, Biju AT, Glorius F. J. Org. Chem. 2009; 74: 9570
- 6a Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
- 6b Xiao Q, Wang W.-H, Liu G, Meng F.-K, Chen J.-H, Yang Z, Shi Z.-J. Chem. Eur. J. 2009; 15: 7292
- 6c Huang J, He Y, Wang Y, Zhu Q. Chem. Eur. J. 2012; 18: 13964
- 6d Alla SK, Kumar RK, Sadhu P, Punniyamurthy T. Org. Lett. 2013; 15: 1334
- 7 Xue D, Long Y.-Q. J. Org. Chem. 2014; 79: 4727
- 8a Shen M, Driver TG. Org. Lett. 2008; 10: 3367
- 8b Diao X, Wang Y, Jiang Y, Ma D. J. Org. Chem. 2009; 74: 7974
- 8c Kim Y, Kumar MR, Park N, Heo Y, Lee S. J. Org. Chem. 2011; 76: 9577
- 8d Mahesh D, Sadhu P, Punniyamurthy T. J. Org. Chem. 2015; 80: 1644
- 8e Mahesh D, Sadhu P, Punniyamurthy T. J. Org. Chem. 2016; 81: 3227
- 9a Zhang J, Zhu D, Yu C, Wan C, Wang Z. Org. Lett. 2010; 12: 2841
- 9b Wan C, Zhang J, Wang S, Fan J, Wang Z. Org. Lett. 2010; 12: 2338
- 9c Yan Y, Zhang Y, Zha Z, Wang Z. Org. Lett. 2013; 15: 2274
- 9d Li M, Xie Y, Ye Y, Zou Y, Jiang H, Zeng W. Org. Lett. 2014; 16: 6232
- 9e Chen Z, Li H, Dong W, Miao M, Ren H. Org. Lett. 2016; 18: 1334
- 10a Liu Y, Wan J.-P. Org. Biomol. Chem. 2011; 9: 6873
- 10b Liu Y, Wan J.-P. Chem. Asian J. 2012; 7: 1488
- 11 6-Methyl-2-phenyl-1H-benzo[d]imidazole (2b); Typical Procedure: CuI (12 mg, 20 mol%), TMEDA (14 mg, 40 mol%) and DIPEA (77 mg, 0.6 mmol) were added to a mixture of substrate 1b (0.3 mmol) and NaN3 (39 mg, 0.6 mmol) in DMSO (1 mL). The mixture was stirred at 130 °C under air for 24 h. After the completion of the reaction (monitored by TLC), the reaction mixture was cooled to ambient temperature, quenched by H2O and extracted with EtOAc (3 × 15 mL). The combined organic layer was washed with brine (25 mL), and dried over Na2SO4. After the evaporation, the residue was purified by column chromatography on silica gel with petroleum ether–EtOAc as eluent to afford the product 2b. Yield: 60% (37 mg); light yellow solid; mp 243–244 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 12.77 (s, 1 H), 8.17 (d, J = 7.6 Hz, 2 H), 7.30–7.60 (m, 5 H), 7.02 (t, J = 4.4 Hz, 1 H), 2.43 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 150.7, 144.2, 135.3, 131.8, 129.6, 128.9, 126.3, 124.0, 123.2, 118.4, 111.0, 21.4. HRMS (ES+–TOF): m/z [M + H]+ calcd for C14H13N2: 209.1079; found: 209.1081.
- 12a Zhu W, Ma D. Chem. Commun. 2004; 888
- 12b Kumar MR, Park A, Park N, Lee S. Org. Lett. 2011; 13: 3542
- 12c Xu C, Jia F.-C, Zhou Z.-W, Zheng S.-J, Li H, Wu A.-X. J. Org. Chem. 2016; 81: 3000
- 13 Cai Z.-J, Wang S.-Y, Ji S.-J. Org. Lett. 2012; 14: 6068