Synlett 2017; 28(04): 504-508
DOI: 10.1055/s-0036-1588086
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Double C–N Bond Formation for the Synthesis of Diverse Benzimidazoles from N-Alkyl-2-iodoaniline and Sodium Azide

Zhengkai Chen*
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: zkchen@zstu.edu.cn   Email: renhj@zstu.edu.cn
,
Hongli Li
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: zkchen@zstu.edu.cn   Email: renhj@zstu.edu.cn
,
Gangjian Cao
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: zkchen@zstu.edu.cn   Email: renhj@zstu.edu.cn
,
Jianfeng Xu
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: zkchen@zstu.edu.cn   Email: renhj@zstu.edu.cn
,
Maozhong Miao
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: zkchen@zstu.edu.cn   Email: renhj@zstu.edu.cn
,
Hongjun Ren*
Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. of China   Email: zkchen@zstu.edu.cn   Email: renhj@zstu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 05 September 2016

Accepted after revision: 05 October 2016

Publication Date:
15 November 2016 (online)


Abstract

An efficient approach to the synthesis of benzimidazole derivatives has been achieved by copper-catalyzed double C–N bonds formation of N-alkyl-2-iodoaniline and sodium azide. The reaction was supposed to proceed through copper-catalyzed tandem reaction of SNAr reaction, aerobic oxidation of C(sp3)–H bond and intramolecular C–N bond formation sequence. Structurally diverse 2-aryl, alkenyl and alkyl benzoimidazole derivatives were assembled by this methodology.

Supporting Information

 
  • References and Notes

    • 1a Kataoka M, Tatsuta M, Yasoshima K, Yura T, Urbahns K, Kiba A, Yamamoto N, Gupta JB, Hashimoto K. Bioorg. Med. Chem. Lett. 2005; 15: 805
    • 1b Sabat M, Vanrens JC. L. M. J, Brugel TA, Maier J, Golebiowski A, De B, Easwaran V, Hsieh LC, Walter RL, Mekel MJ, Evdokimov A, Janusz MJ. Bioorg. Med. Chem. Lett. 2006; 16: 5973
    • 1c Asensio JA, Gomez-Romero P. Fuel Cells 2005; 5: 336
    • 1d Schwartz G, Fehse K, Pfeiffer M, Walzer K, Leo K. Appl. Phys. Lett. 2006; 89: 083509
    • 2a Denny WA, Rewcastle GW, Bauley BC. J. Med. Chem. 1990; 33: 814
    • 2b Hu L, Kully ML, Boykin DW, Abood N. Bioorg. Med. Chem. Lett. 2009; 19: 3374
    • 2c Seyhan E, Sultan N, Nilgun A, Noyanalpan N. Arzneim. Forsch. 1997; 47: 410
    • 2d Porcari AR, Devivar RV, Kucera LS, Drach JC, Townsend LB. J. Med. Chem. 1998; 41: 1252
    • 2e Migawa MT, Girardet JL, Walker JA, Koszalka GW, Chamberlain SD, Drach JC, Townsend LB. J. Med. Chem. 1998; 41: 1242
    • 2f Tamm I. Science 1957; 126: 1235
    • 3a Singh N, Jang DO. Org. Lett. 2007; 9: 1991
    • 3b Chaudhuri P, Ganguly B, Bhattacharya S. J. Org. Chem. 2007; 72: 1912
    • 3c Sannigrahi A, Arunbabu D, Sankar RM, Jana T. Macromolecules 2007; 40: 2844
    • 3d Ooyama Y, Nakamura T, Yoshida K. New J. Chem. 2005; 29: 447
    • 4a Bahrami K, Khodaei MM, Naali F. J. Org. Chem. 2008; 73: 6835
    • 4b Maiti DK, Halder S, Pandit P, Chatterjee N, Joarder DD, Pramanik N, Saima Y, Patra A, Maiti PK. J. Org. Chem. 2009; 74: 8086
    • 4c Chari MA, Shobha PS. D, Mukkanti K. J. Heterocycl. Chem. 2010; 47: 153
    • 4d Carvalho LC.R, Fernandes E, Marques MM. B. Chem. Eur. J. 2011; 17: 12544
    • 4e Hein DW, Alheim RJ, Leavitt JJ. J. Am. Chem. Soc. 1957; 79: 427
    • 4f Lee Y.-S, Cho Y.-H, Lee S, Bin J.-K, Yang J, Chae G, Cheon C.-H. Tetrahedron 2015; 71: 532
    • 4g Lee Y.-S, Cheon C.-H. Adv. Synth. Catal. 2015; 357: 2951
    • 5a Peng J, Ye M, Zong C, Hu F, Feng L, Wang X, Wang Y, Chen C. J. Org. Chem. 2011; 76: 716
    • 5b Zou B, Yuan Q, Ma DW. Angew. Chem. Int. Ed. 2007; 46: 2598
    • 5c Zheng N, Anderson KW, Huang X, Nguyen HN, Buchwald SL. Angew. Chem. Int. Ed. 2007; 46: 7509
    • 5d Brain CT, Steer JT. J. Org. Chem. 2003; 68: 6814
    • 5e Hirano K, Biju AT, Glorius F. J. Org. Chem. 2009; 74: 9570
    • 6a Brasche G, Buchwald SL. Angew. Chem. Int. Ed. 2008; 47: 1932
    • 6b Xiao Q, Wang W.-H, Liu G, Meng F.-K, Chen J.-H, Yang Z, Shi Z.-J. Chem. Eur. J. 2009; 15: 7292
    • 6c Huang J, He Y, Wang Y, Zhu Q. Chem. Eur. J. 2012; 18: 13964
    • 6d Alla SK, Kumar RK, Sadhu P, Punniyamurthy T. Org. Lett. 2013; 15: 1334
  • 7 Xue D, Long Y.-Q. J. Org. Chem. 2014; 79: 4727
    • 8a Shen M, Driver TG. Org. Lett. 2008; 10: 3367
    • 8b Diao X, Wang Y, Jiang Y, Ma D. J. Org. Chem. 2009; 74: 7974
    • 8c Kim Y, Kumar MR, Park N, Heo Y, Lee S. J. Org. Chem. 2011; 76: 9577
    • 8d Mahesh D, Sadhu P, Punniyamurthy T. J. Org. Chem. 2015; 80: 1644
    • 8e Mahesh D, Sadhu P, Punniyamurthy T. J. Org. Chem. 2016; 81: 3227
    • 9a Zhang J, Zhu D, Yu C, Wan C, Wang Z. Org. Lett. 2010; 12: 2841
    • 9b Wan C, Zhang J, Wang S, Fan J, Wang Z. Org. Lett. 2010; 12: 2338
    • 9c Yan Y, Zhang Y, Zha Z, Wang Z. Org. Lett. 2013; 15: 2274
    • 9d Li M, Xie Y, Ye Y, Zou Y, Jiang H, Zeng W. Org. Lett. 2014; 16: 6232
    • 9e Chen Z, Li H, Dong W, Miao M, Ren H. Org. Lett. 2016; 18: 1334
  • 11 6-Methyl-2-phenyl-1H-benzo[d]imidazole (2b); Typical Procedure: CuI (12 mg, 20 mol%), TMEDA (14 mg, 40 mol%) and DIPEA (77 mg, 0.6 mmol) were added to a mixture of substrate 1b (0.3 mmol) and NaN3 (39 mg, 0.6 mmol) in DMSO (1 mL). The mixture was stirred at 130 °C under air for 24 h. After the completion of the reaction (monitored by TLC), the reaction mixture was cooled to ambient temperature, quenched by H2O and extracted with EtOAc (3 × 15 mL). The combined organic layer was washed with brine (25 mL), and dried over Na2SO4. After the evaporation, the residue was purified by column chromatography on silica gel with petroleum ether–EtOAc as eluent to afford the product 2b. Yield: 60% (37 mg); light yellow solid; mp 243–244 °C. 1H NMR (400 MHz, DMSO-d 6): δ = 12.77 (s, 1 H), 8.17 (d, J = 7.6 Hz, 2 H), 7.30–7.60 (m, 5 H), 7.02 (t, J = 4.4 Hz, 1 H), 2.43 (s, 3 H). 13C NMR (100 MHz, DMSO-d 6): δ = 150.7, 144.2, 135.3, 131.8, 129.6, 128.9, 126.3, 124.0, 123.2, 118.4, 111.0, 21.4. HRMS (ES+–TOF): m/z [M + H]+ calcd for C14H13N2: 209.1079; found: 209.1081.
    • 12a Zhu W, Ma D. Chem. Commun. 2004; 888
    • 12b Kumar MR, Park A, Park N, Lee S. Org. Lett. 2011; 13: 3542
    • 12c Xu C, Jia F.-C, Zhou Z.-W, Zheng S.-J, Li H, Wu A.-X. J. Org. Chem. 2016; 81: 3000
  • 13 Cai Z.-J, Wang S.-Y, Ji S.-J. Org. Lett. 2012; 14: 6068