Synlett 2016; 27(15): 2259-2263
DOI: 10.1055/s-0035-1562115
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Synthesis of Trifluoromethylated Iodoisoxazoles via the Reaction of Trifluoroacetohydroximoyl Chloride with Terminal Alkynes and N-Iodosuccinimide

Yuwei Guo
a   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: jmzhang@shu.edu.cn
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: ymwu@sioc.ac.cn
,
Xiaojun Wang
a   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: jmzhang@shu.edu.cn
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: ymwu@sioc.ac.cn
,
Zhentong Zhu
c   School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, P. R. of China
,
Jianmin Zhang*
a   Department of Chemistry, Shanghai University, Shanghai 200444, P. R. of China   Email: jmzhang@shu.edu.cn
,
Yongming Wu*
b   Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China   Email: ymwu@sioc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 22 February 2016

Accepted after revision: 01 April 2016

Publication Date:
23 June 2016 (online)


Abstract

Trifluoromethylated iodoisoxazoles have been synthesized by the reaction of trifluoroacetohydroximoyl chloride, alkynes, and N-iodosuccinimide in a one-pot reaction under metal-free and mild conditions. An array of iodoisoxazole compounds with a wide range of functionalities was obtained in moderate to good yields. The iodine-substituted isoxazoles render versatile reaction sites for subsequent conversion. Plausible pathways are proposed based on the control experiments.

Supporting Information

 
  • References and Notes

    • 1a Sperry JB, Wright DL. Curr. Opin. Drug Discovery Dev. 2005; 8: 723
    • 1b Lakhvich EV. K. F. A, Akhrem AA. Chem. Heterocycl. Compd. 1989; 25: 359
    • 2a Müller GF, Eugster CH. Helv. Chim. Acta 1965; 48: 910
    • 2b Takemoto T, Nakajima T, Yokobe T. J. Pharm. Soc. Jpn. 1964; 84: 1232
    • 3a Simoni D, Rondanin R, Baruchello R. J. Med. Chem. 2008; 51: 4796
    • 3b Daidone G, Raffa D, Maggio B, Plescia F, Cutuli VM. C, Mangano NG, Caruso A. Arch. Pharm. Pharm. Med. Chem. 1999; 332: 50
    • 3c Van Tol HH. M, Bunzow JR, Guan HC, Sunahara RK, Seeman P, Niznik HB, Civelli O. Nature 1991; 350: 610
    • 3d Ludden H, Pritchett DB, Kohler M, Killisch I, Keinanen K, Monyer H, Sprengel R, Seeburg PH. Nature 1990; 346: 648
    • 4a Rowley M, Broughton HB, Collins I, Baker R, Emms F, Marwood R, Patel S, Ragan CI. J. Med. Chem. 1996; 39: 1943
    • 4b Frølund B, Jørgensen AT, Tagmose L, Stensbøl TB, Vestergaard HT, Engblom C, Kristiansen U, Sanchez C, Krogsgaard-Larsen P, Liljefors T. J. Med. Chem. 2002; 45: 2454
    • 4c Tomita K, Takahi Y, Ishizuka R, Kamamura S, Nakagawa M, Ando M, Nakanishi T, Udaira H. Ann. Sankyo Res. Lab. 1973; 1: 25
    • 4d Talley J. J. Prog. Med. Chem. 1999; 13: 201
    • 5a Martins MA. P, Siqueira GM, Bastos GP, Bonacorso HG, Zanatta N. J. Heterocycl. Chem. 1996; 33: 1619
    • 5b Katritzky AR, Wang M, Zhang SM, Voronkov MV. J. Org. Chem. 2001; 66: 6787
    • 5c Sloop JC, Bumgardner CL, Loehle WD. J. Fluorine Chem. 2002; 118: 135
    • 6a Tanaka K, Masuda H, Mitsuhashi K. Bull. Chem. Soc. Jpn. 1984; 57: 2184
    • 6b Gonçalves RS. B, Santos MD, Bernadat G, Delpon DB, Crousse B. Beilstein J. Org. Chem. 2013; 9: 2387
    • 8a Yamazaki T, Taguchi T, Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology . Wiley-Blackwell; Chichester, UK: 2009: 1
    • 8b Babudri F, Farinola GM, Naso F, Ragni R. Chem. Commun. 2007; 10: 1003
    • 8c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 8d Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 8e Harper DB, O’Hagan D. Nat. Prod. Rep. 1994; 11: 123
    • 8f Hiyama T. Organofluorine Compounds, Chemistry and Applications. Springer; Berlin: 2000: 137
    • 8g Kirsch P. Modern Fluoroorganic Chemistry: Synthesis, Reactivity, Applications. Wiley-VCH; Weinheim: 2013. 2nd ed. 1
    • 9a Liu X, Xu C, Wang M, Liu Q. Chem. Rev. 2015; 115: 683
    • 9b Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 9c Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 10a Zhang M, Wu Y, Li Y. J. Fluorine Chem. 2006; 127: 218
    • 10b Chen Z, Zhu J, Xie H, Li S, Wu Y, Gong Y. Adv. Synth Catal. 2010; 352: 1296
    • 10c Chen Z, Zhu J, Xie H, Li S, Wu Y, Gong Y. Org. Lett. 2010; 12: 4376
  • 11 Kemp MI. WO 2008135830, 2008
  • 12 Chen W, Zhang J, Wang B, Zhao Z, Wang X, Hu Y. J. Org. Chem. 2015; 80: 2413
  • 13 Typical Procedure for the Synthesis of Compound 4a To a dry reaction tube, 2a (147 mg, 1.0 mmol), phenylacetylene (204 mg, 2.0 mmol), NaHCO3 (101 mg, 1.2 mmol), NIS (450 mg, 2.0 mmol), and CH2Cl2 (6 mL) was added successively at room temperature under N2 atmosphere. Then the reaction was stirred at room temperature. By the end (monitored by 19F NMR), the system was diluted with water, and extracted with CH2Cl2 (3 × 5 mL). The combined organic extracts were dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (hexane) affording 4a (268 mg, yield 79%); white solid; mp 102–103 °C. 1H NMR (400 MHz, CDCl3): δ = 8.12–7.93 (m, 2 H), 7.55 (d, J = 6.1 Hz, 3 H). 19F NMR (376 MHz, CDCl3): δ = –63.67 (s, 3 F). 13C NMR (101 MHz, CDCl3): δ = 171.35 (s), 157.56 (q, J = 36.5 Hz), 131.70 (s), 129.09 (s), 127.92 (s), 126.03 (s), 119.41 (q, J = 272.5 Hz), 49.70 (s). HRMS (EI): m/z calcd for C10H5F3INO [M]+: 338.9368; found: 338.9362. IR (KBr): ν = 2956, 1476, 1446, 1255, 1187, 1143, 1006, 960 cm–1.
  • 14 Jiang Q, Wang J, Guo C. Synthesis 2015; 47: 2081
  • 15 Waldo JP, Mehta S, Neuenswander B, Lushington GH, Larock RC. J. Comb. Chem. 2008; 10: 658