Synlett 2016; 27(10): 1551-1556
DOI: 10.1055/s-0035-1561987
letter
© Georg Thieme Verlag Stuttgart · New York

Nucleophilic Opening of an Epoxide by a Masked Glycine Anion Equivalent: A Route to C-Glycosyl Amino Acids

Maud Gayral
,
Rok Frlan
,
Janez Mravljak
,
Christine Gravier-Pelletier*
Further Information

Publication History

Received: 20 December 2015

Accepted after revision: 03 March 2016

Publication Date:
18 March 2016 (online)


Abstract

An efficient method has been developed for the synthesis of C-glycosyl amino acids through a tandem nucleophilic opening–cyclization of an l-ido-bisepoxide with the anion of Schöllkopf’s bislactim. A masked amine was introduced at the CH2C1-position of the resulting compound. The products are enantiopure polyfunctionalized intermediates, suitable for further synthesis of antibacterial compounds.

 
  • References and Notes

  • 1 Present address: Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia.
    • 2a Lecerclé D, Clouet A, Al-Dabbagh B, Bouhss A, Gravier-Pelletier C, Le Merrer Y. Bioorg. Med. Chem. 2010; 18: 4560
    • 2b Mravljak J, Monasson O, Al-Dabbagh B, Crouvoisier M, Bouhss A, Gravier-Pelletier C, Le Merrer Y. Eur. J. Med. Chem. 2011; 46: 1582
    • 2c Auberger N, Frlan R, Al-Dabbagh B, Bouhss A, Crouvoisier M, Gravier-Pelletier C, Le Merrer Y. Org. Biomol. Chem. 2011; 9: 8301
    • 2d Fer MJ, Olatunji S, Bouhss A, Calvet-Vitale S, Gravier-Pelletier C. J. Org. Chem. 2013; 78: 10088
    • 3a van Heijenoort J. Nat. Prod. Rep. 2001; 18: 503
    • 3b Henrichfreise B, Schiefer A, Schneider T, Nzukou E, Poellinger C, Hoffmann T.-J, Johnston KL, Moelleken K, Wiedemann I, Pfarr K, Hoerauf A, Sahl HG. Mol. Microbiol. 2009; 73: 913
  • 4 Vollmer W, Blanot D, de Pedro MA. FEMS Microbiol. Rev. 2008; 32: 149
    • 5a Barreteau H, Kovač A, Boniface A, Sova M, Gobec S, Blanot D. FEMS Microbiol. Rev. 2008; 32: 168
    • 5b Bouhss A, Trunkfield AE, Bugg TD. H, Mengin-Lecreulx D. FEMS Microbiol. Rev. 2008; 32: 208
  • 6 Bugg TD. H, Braddick D, Dowson CG, Roper DI. Trends Biotechnol. 2011; 29: 167
  • 7 Bugg TD. H, Lloyd AJ, Roper DI. Infect. Disord.: Drug Targets 2006; 6: 85
  • 8 Bouhss A, Crouvoisier M, Blanot D, Mengin-Lecreulx D. J. Biol. Chem. 2004; 279: 29974
    • 9a Ubukata M, Isono K. J. Am. Chem. Soc. 1988; 4416
    • 9b Ubukata M, Kimura K, Isono K, Nelson CC, Gregson JM, McCloskey J. J. Org. Chem. 1992; 57: 6392
    • 9c Brandish PE, Kimura KI, Inukai M, Southgate R, Lonsdale JT, Bugg TD. Antimicrob. Agents Chemother. 1996; 40: 1640
    • 9d Esumi Y, Suzuki Y, Kimura K, Yoshihama M, Ichikawa T, Uramoto M. J. Antibiot. 1999; 52: 281
    • 10a Igarashi M, Nakagawa N, Doi S, Hattori N, Naganawa H, Hamada M. J. Antibiot. 2003; 56: 580
    • 10b Igarashi M, Takahashi Y, Shitara T, Nakamura H, Naganawa H, Miyake T, Akamatsu Y. J. Antibiot. 2005; 58: 327

      For recent syntheses of liposidomycin and caprazamycin analogues, see:
    • 11a Xu X.-H, Trunkfield AE, Bugg TD. H, Quing F.-L. Org. Biomol. Chem. 2008; 6: 157
    • 11b Hirano S, Ichikawa S, Matsuda A. J. Org. Chem. 2008; 73: 569
    • 11c Hirano S, Ichikawa S, Matsuda A. Bioorg. Med. Chem. 2008; 16: 428
    • 11d Hirano S, Ichikawa S, Matsuda A. Bioorg. Med. Chem. 2008; 16: 5123
    • 11e Li K, Ichikawa S, Al-Dabbagh B, Bouhss A, Matsuda A. J. Med. Chem. 2010; 53: 3793
    • 11f Sarabia F, Vivar-García C, García-Ruiz C, Martín-Ortiz L, Romero-Carrasco A. J. Org. Chem. 2012; 77: 1328
    • 11g Yamaguchi M, Matsuda A, Ichikawa S. Org. Biomol. Chem. 2015; 13: 1187
    • 11h Ichikawa S, Yamaguchi M, Hsuan LS, Kato Y, Matsuda A. ACS Infect. Dis. 2015; 1: 151
    • 11i Nakaya T, Matsuda A, Ichikawa S. Org. Biomol. Chem. 2015; 13: 7720
    • 12a Sinaÿ P. Pure Appl. Chem. 1997; 69: 459
    • 12b Beau J.-M, Gallagher TC. Top. Curr. Chem. 1997; 187: 1
    • 12c Nicotra F. Top. Curr. Chem. 1997; 187: 55
    • 12d Liu L, McKee M, Postema MH. D. Curr. Org. Chem. 2001; 5: 1133
    • 12e Yuan X, Linhardt RJ. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2005; 5: 1393
  • 13 Monasson O, Ginisty M, Mravljak J, Bertho G, Gravier-Pelletier C, Le Merrer Y. Tetrahedron: Asymmetry 2009; 20: 2320
  • 14 Dini C, Drochon N, Guillot JC, Mauvais P, Walter P, Azsodi J. Bioorg. Med. Chem. Lett. 2001; 11: 533
    • 15a Poitout L, Le Merrer Y, Depezay JC. Tetrahedron Lett. 1994; 35: 3293
    • 15b Le Merrer Y, Poitout L, Depezay JC, Dosbaa I, Geoffroy S, Foglietti M.-J. Bioorg. Med. Chem. 1997; 5: 519
    • 16a Schöllkopf U. Tetrahedron 1983; 39: 2085 ; and references therein
    • 16b Schöllkopf U, Gruttner S, Anderskewitz R, Egert E, Dyrbusch M. Angew. Chem. 1987; 99: 717
    • 17a Chen J, Corbin SP, Holman NJ. Org. Process Res. Dev. 2005; 9: 185
    • 17b Carlsson A.-C, Jam F, Tullberg M, Pilotti Å, Ioannidis P, Luthman K, Grøtli M. Tetrahedron Lett. 2006; 47: 5199
    • 17c Bull SD, Davies SG, Moss WO. Tetrahedron: Asymmetry 1998; 9: 321
  • 18 Schöllkopf U, Groth U. Angew. Chem., Int. Ed. Engl. 1981; 20: 977
  • 19 Compounds 1a and 1b; Typical Procedure A 1.51 M solution of BuLi in hexane (2.43 mL, 3.67 mmol, 1.2 equiv) was added dropwise to a solution of the Schöllkopf bislactim ether (658 μL, 3.67 mmol, 1.2 equiv) in anhyd THF (8 mL) at –78 °C under argon. The yellow solution was then stirred for 30 min. In another flask, BF3·OEt2 (388 μL, 3.06 mmol, 1 equiv) was added to a solution of the l-ido-bisepoxide (1 g, 3.06 mmol, 1 equiv) in anhyd THF (3 mL) at –78 °C under argon, and the mixture was stirred for 10 min. The solution of the Schöllkopf bislactim anion was then transferred to the l-ido-bisepoxide solution by using a Teflon cannula, and the mixture was stirred for 1 h at –78 °C and then overnight at –30 °C. The reaction was then quenched with sat. aq NaHCO3, and the mixture was extracted with EtOAc (3 × 20 mL). The organic extracts were combined, washed with brine, dried (MgSO4), and concentrated in vacuo to give a yellow oil. This crude product was purified by chromatography [silica gel, cyclohexane–EtOAc–Et3N (8:2:3‰)] to give a mixture of diastereoisomers; yield: 880 mg (56%). A second purification by chromatography [silica gel, CH2Cl2–acetone–Et3N (95:5:3‰)] gave the pure major diastereoisomer 1a as a yellow oil and the pure minor diastereoisomer 1b as a pale-yellow oil. 1a: Yellow oil; yield: 552 mg (35%); [α]D 20 +22 (c 1.0, CH2Cl2); Rf  = 0.53 (CH2Cl2–acetone, 9:1). 1H NMR (500 MHz, CDCl3): δ = 7.40–7.32 (m, 10 H, HAr), 4.63, 4.48 (AB, d, JA,B  = 11.9 Hz, 2 H, CH2Ph), 4.60 (AB, JA,B  = 11.7 Hz, 2 H, CH2Ph), 4.47–4.44 (m, 1 H, H4), 4.20 (ddd, JH6,H5b  = 10 Hz, JH6,H5a  = JH6,H8  = 3.5 Hz, 1 H, H6), 4.13 (dd, JH2,H1  = 3.5 Hz, JH2,H3  = 1.5 Hz, 1 H, H2), 4.06–4.02 (m, 1 H, H1), 3.99 (t, JH8,H9  = JH8,H6  = 3.4 Hz, 1 H, H8), 3.93 (dd, JH3,H4  = 3.8 Hz, JH3,H2  = 1.5 Hz, 1 H, H3), 3.82 (dd, JCHaOH,CHbOH  = 11.6 Hz, JCHaOHa,H1  = 2.9 Hz, 1 H, CHaOH), 3.74, 3.71 (2 s, 6 H, O–CH3), 3.67 (br d, JCHbOH,CHaOH  = 11.6 Hz, 1 H, CHbOH), 2.74 (br s, 1 H, OH), 2.47 (ddd, JH5a,H5b  = 13.7 Hz, JH5a,H4  = 9.1 Hz, JH5a,H6  = 3.5 Hz, 1 H, H5a), 2.30 (dqq, JH9,H10a  = JH9,H10b  = 6.8 Hz, JH9,H8  = 3.5 Hz, 1 H, H9), 1.77 (ddd, JH5b,H5a  = 13.7 Hz, JH5b,H6  = 10.1 Hz, JH5b,H4  = 3.5 Hz, 1 H, H5b), 1.09 (d, JH10a,H9  = 6.9 Hz, 3 H, H10a), 0.76 (d, JH10b,H9  = 6.8 Hz, 3 H, H10b). 13C NMR (125 MHz, CD3OD): δ = 163.9 (C7), 163.4 (C7′), 137.7, 137.6, 128.4, 128.3, 127.8, 127.7, 127.6, 127.5 (CAr), 83.7 (C1), 83.5 (C3), 83.1 (C2), 77.6 (C4), 71.9 (CH2Ph), 71.3 (CH2Ph), 62.9 (CH2OH), 60.8 (C8), 53.0 (C6), 52.4 (OCH3), 52.3 (OCH3), 33.9 (C5), 31.7 (C9), 19.0, 16.7 (C10). LRMS (ESI): m/z = 511.3 [M + H]+, 533.2 [M + Na]+. HRMS (ESI): m/z [M + H]+ calcd for C29H39N2O6: 511.2808; found: 511.2808; [M + Na]+ calcd for C29H38N2NaO6: 533.2628; found: 533.2623. 1b: Pale-yellow oil; yield: 76 mg (5%). 1H NMR (500 MHz, CDCl3): δ = 7.38–7.27 (m, 10 H, HAr), 4.62, 4.44 (AB, d, JA,B  = 12.0 Hz, 2 H, CH2Ph), 4.56 (AB, JA,B  = 12.0 Hz, 2 H, CH2Ph), 4.35 (ddd, JH4,H3  = 7.0, JH4,H5b  = 7.0 Hz, JH4,H5a  = 4.5 Hz, 1 H, H4), 4.08 (d, JH2,H1  = 3 Hz, 1 H, H2), 4.05 (m, 1 H, H6), 3.99 (m, 1 H, H1), 3.97 (dd, JH3,H4  = 7 Hz, JH3,H2  = 3 Hz, 1 H, H3), 3.93 (dd, JH8,H6  = 5.0 Hz, JH8,H9  = 3.5 Hz, 1 H, H8), 3.76 (dd, JCHaOH,CHbOH  = 12.0 Hz, JCHaOHa,H1  = 3.0 Hz, 1 H, CHaOH), 3.68, 3.65 (2 s, 6 H, O–CH3), 3.61 (dd, JCHbOH,CHaOH  = 12.0 Hz, JCHbOH,H1  = 4 Hz, 1 H, CHbOH), 2.45 (br s, 1 H, OH), 2.39 (ddd, JH5a,H5b  = 13.5 Hz, JH5a,H6  = 8.0 Hz, JH5a,H4  = 4.5 Hz, 1 H, H5a), 2.20 (dqq, JH9,H10a  = JH9,H10b  = 7.0 Hz, JH9,H8  = 3.5 Hz, 1 H, H9), 1.69 (ddd, JH5b,H5a  = 13.5 Hz, JH5b,H6  = JH5b,H4  = 7.0 Hz, 1 H, H5b), 1.04 (d, JH10a,H9  = 7.0 Hz, 3 H, H10a), 0.71 (d, JH10b,H9  = 7.0 Hz, 3 H, H10b).
  • 20 Busch K, Groth UM, Kühnle W, Schöllkopf U. Tetrahedron 1992; 48: 5607
  • 21 Heidler P, Zohrabi-Kalantari V, Kaiser M, Brun R, Emmrich T, Link A. Bioorg. Med. Chem. 2009; 17: 1428
  • 22 Selected Physical and Spectroscopic Data for Compound 2 Pale yellow oil; yield: 228 mg (86%); [α]D 20 +13 (c 1.0, CH2Cl2); Rf  = 0.52 (cyclohexane–EtOAc, 7:3). 1H NMR (500 MHz, CD3OD): δ = 7.77 (m, 4 H, HPhth), 7.33–7.25 (m, 5 H, HAr), 7.14–7.07 (m, 5 H, HAr), 4.63, 4.49 (AB, JA,B  = 12.1 Hz, 2 H, CH2Ph), 4.42, 4.37 (AB, JA,B  = 12.1 Hz, 2 H, CH2Ph), 4.32–4.31 (m, 1 H, H4), 4.12–4.08 (m, 3 H, H1, H2, and H6), 3.89–3.78 (m, 4 H, H3, H8, and CH2NPhth), 3.66 (s, 3 H, OCH3), 3.63 (s, 3 H, OCH3), 2.31 (ddd, JH5a,H5b  = 13.1 Hz, JH5a,H4  = 9.5 Hz, JH5a,H6  = 4.7 Hz, 1 H, H5a), 2.21–2.18 (m, 1 H, H9), 1.73 (ddd, JH5b,H5a  = 13.1 Hz, JH5b,H6  = 9.5 Hz, JH5b,H4  = 4.3 Hz, 1 H, H5b), 1.02 (d, JH10a,H9  = 7.0 Hz, 1 H, H10a), 0.69 (d, JH10b,H9  = 7.0 Hz, 1 H, H10b). 13C NMR (125 MHz, CD3OD): δ = 169.8 (C7, COPhth), 139.4, 139.1, 135.3, 133.3, 129.4, 129.3, 129.0, 128.7 (3s), 124.24 (CAr), 84.6, 84.4 (C2, C3), 82.4 (C1), 79.8 (C4), 72.6 (CH2Ph), 72.5 (CH2Ph), 61.9 (C8), 54.4 (C6), 53.2 (OCH3), 53.1 (OCH3), 41.2 (CH2NPhth), 35.0 (C5), 32.8 (C9), 19.5 (C10), 17.1 (C10). LRMS (ESI): m/z = 640.3 [M + H]+. HRMS (ESI): m/z [M + H]+ calcd for C37H42N3O7: 640.3023; found: 640.3012.
  • 23 Ojea V, Ruiz M, Shapiro G, Pombo-Villar E. J. Org. Chem. 2000; 65: 1984
  • 24 Selected Physical and Spectroscopic Data for Compound 3 Very pale yellow; yield: 83 mg (73%); [α]D 20 +41 (c 1.0, MeOH). Rf  = 0.37 (EtOAc). 1H NMR (500 MHz, CD3OD): δ = 7.75 (m, 4 H, HPhth), 7.32–7.25 (m, 5 H, HAr), 7.14–7.06 (m, 5 H, HAr), 4.61, 4.37 (AB, JA,B  = 11.5 Hz, 2 H, CH2Ph), 4.48, 4.40 (AB, JA,B  = 11.8 Hz, 2 H, CH2Ph), 4.16–4.10 (m, 2 H, H1, H4), 4.10–4.05 (m, 1 H, H2), 3.84 (ABX, JA,B  = 14.0 Hz, JA,X  = 7.5 Hz, 2 H, JB,X  = 5.0 Hz, CH2NPhth), 3.87–3.85 (m, 1 H, H3), 3.67 (s, 3 H, OCH3), 3.59 (dd, JH6,H5b  = 8.5 Hz, JH6,5a  = 5 Hz, 1 H, H6), 2.17 (ddd, JH5a,H5b  = 14 Hz, JH5a,H4  = 9 Hz, 1 H, JH5a,H6  = 5 Hz, H5a), 1.82 (ddd, JH5b,H5a  = 14 Hz, JH5b,H6  = 8.5 Hz, 1 H, JH5b,H4  = 4 Hz, H5b). 13C NMR (125 MHz, CD3OD): δ = 177.1 (CO2CH3), 169.7 (COPhth), 139.2, 139.0, 135.3, 133.2, 129.4, 129.3, 129.0, 128.8, 128.7, 128.6, 124.2 (CAr), 84.4, 84.2 (C2, C3), 82.8 (C1), 79.7 (C4), 72.5 (CH2Ph), 53.1 (C6), 52.5 (OCH3), 41.1 (CH2NPhth), 34.7 (C5). HRMS (ESI): m/z [M + H]+ calcd for C31H33N2O7: 545.2288; found: 545.2294.
    • 25a Abushanab E, Vemishetti P, Leiby RW, Singh HK, Mikkilineni AB, Wu DC. J, Saibaba R, Panzica RP. J. Org. Chem. 1988; 53: 2598
    • 25b Gravier-Pelletier C, Dumas J, Le Merrer Y, Depezay J.-C. J. Carbohydr. Res. 1992; 11: 969
    • 25c Abushanab E, Bessodes M, Antonakis K. Tetrahedron Lett. 1994; 25: 3841
    • 25d Lilly MJ, Miller NA, Edwards AJ, Willis AC, Turner P, Paddon-Row MN, Sherburn MS. Chem. Eur. J. 2005; 11: 2525
  • 26 Kolb HC, Sharpless KB. Tetrahedron 1992; 48: 10515
  • 27 Selected Physical and Spectroscopic Data for Compound 5 Colourless oil; yield: 51 mg (63%); [α]D 20 +11 (c 1.02, MeOH); Rf  = 0.28 (cyclohexane–EtOAc, 7:3). 1H NMR (500 MHz, CD3OD): δ = 7.74–7.67 (m, 8 H, 4 HPhth + 4 HSiPh), 7.42–7.37 (m, 6 H, HSiPh), 7.31–7.27 (m, 5 H, HAr), 7.13–7.07 (m, 5 H, HAr), 4.60, 4.35 (AB, d, JA,B  = 11.6 Hz, 2 H, CH2Ph), 4.47, 4.40 (AB, d, JA,B  = 12.0 Hz, 2 H, CH2Ph), 4.16–4.13 (m, 1 H, H4), 4.13–4.06 (m, 2 H, H1, H2), 3.92 (dd, JH10a,H10b  = 10.4 Hz, JH10a,H9  = 3.4 Hz, 1 H, H10a), 3.84 (dd, JH10b,H10a  = 10.1 Hz, JH10b,H9  = 3.3 Hz, 1 H, H10b), 3.83–3.74 (m, 3 H, H3, CH2NPhth), 3.65 (s, 3 H, COOCH3), 3.60–3.58 (m, 1 H, H8), 3.52 (ddd, JH9,H8  = 7.2 Hz, JH9,H10a  = JH9,H10b  = 3.4 Hz, 1 H, H9), 3.37 (t, JH6,H5  = 8.6 Hz, 1 H, H6), 2.61–2.54 (m, 2 H, H7), 2.06 (ddd, JH5a,H5b  = 13.5 Hz, JH5a,H6  = 8.7 Hz, JH5a,H4  = 5.2 Hz, H5a, 1 H), 1.86 (ddd, JH5b,H5a  = 13.1 Hz, JH5b,H6  = 8.7 Hz, JH5b,H4  = 5 Hz, 1 H, H5a), 1.04 (s, 9 H, C(CH3)3). 13C NMR (125 MHz, CD3OD): δ = 176.4 (CO2CH3), 169.7 (COPhth), 139.2, 139.0, 136.7, 135.3, 134.2, 133.2, 131.0 (2s), 129.4, 129.3, 129.1, 129.0, 128.9 (2s), 128.8 (2s), 128.7, 124.2 (CAr), 84.2, 84.1 (C2, C3), 82.7 (C1), 79.9 (C4), 75.5 (2 CH2Ph), 70.7 (C8), 67.9 (C9), 65.6 (C10), 60.1 (C6), 52.4 (OCH3), 51.3 (C7), 41.1 (CH2NPhth), 33.3 (C5), 27.3 [C(CH3)3], 14.5 [C(CH3)3]. LRMS (ESI): m/z = 912.4 [M + H]+; HRMS (ESI) m/z [M + H]+ calcd for C51H58N5O9Si: 912.4004; found: 912.3983.
  • 28 Honcharenko D, Varghese OP, Plashkevych O, Barman J, Chattopadhyaya J. J. Org. Chem. 2006; 71: 299
  • 29 Selected Physical and Spectroscopic Data for Compound 6 Colourless oil; yield: 25 mg (46%); [α]D 20 +26 (c 1.0, MeOH). Rf  = 0.46 (CH2Cl2–MeOH, 98:2). 1H NMR (500 MHz, CD3OD): δ = 7.34–7.27 (m, 10 H, HAr), 4.58 (AB, d, JA,B  = 12.0 Hz, 2 H, CH2Ph), 4.45 (AB, d, JA,B  = 12.1 Hz, 2 H, CH2Ph), 4.33–4.30 (m, 1 H, H4), 4.14–4.11 (m, 1 H, H6), 3.93 (t, JH8,H9  = JH8,H6  = 3.8 Hz, 1 H, H8), 3.90–3.84 (m, 3 H, H1, H2, H3), 3.68, 3.65 (2s, 6 H, OCH3), 2.83–2.78 (m, 2 H, CH2NH2), 2.34 (ddd, JH5a,H5b  = 12.7 Hz, JH5a,H4  = 8.5 Hz, JH5a,H6  = 3.3 Hz, 1 H, H5a), 2.24 (dqq, JH9,H10a  = JH9,H10b  = 6.9 Hz, JH9,H8  = 3.8 Hz, 1 H, H9), 1.76 (ddd, JH5b,H5a  = 13.1 Hz, JH5b,H6  = 10.1 Hz, JH5b,H4  = 3.3 Hz, 1 H, H5b), 1.04 (d, JH10a,H9  = 6.9 Hz, 3 H, H10a), 0.71 (d, JH10b,H9  = 6.9 Hz, 3 H, H10b). 13C NMR (125 MHz, CD3OD): δ = 165.8 (C7), 165.2 (C7′), 139.4 (2s), 129.5 (2s), 129.0, 128.9 (CAr), 85.9, 85.6 (C2, C3), 84.8 (C1), 79.4 (C4), 72.8 (CH2Ph), 72.6 (CH2Ph), 61.9 (C8), 54.4 (C6), 53.2 (OCH3), 53.1 (OCH3), 45.1 (CH2NH2), 35.1 (C5), 32.9 (C9), 19.5, 17.1 (C10). LRMS (ESI): m/z = 510.3 [M + H]+; HRMS (ESI): m/z [M + H]+ calcd for C29H40N3O5: 510.2968; found: 510.2962; [M + Na]+ calcd for C29H39N3NaO5: 532.2787; found: 532.2782.
  • 30 Kotch FW, Sidorov V, Lam Y.-F, Kayser KJ, Li H, Kaucher MS, Davis JT. J. Am. Chem. Soc. 2003; 125: 15140
  • 31 Selected Physical and Spectroscopic Data for Compound 7 Colourless oil; yield: 59 mg (61%); [α]D 20 +38 (c 1.0, MeOH). Rf  = 0.38 (EtOAc–MeOH, 10:1). 1H NMR (500 MHz, CD3OD): δ = 7.34–7.28 (m, 10 H, HAr), 4.57 (AB, d, J A,B = 11.1 Hz, 2 H, CH2Ph), 4.43 (AB, d, J A,B = 11.1 Hz, 2 H, CH2Ph), 4.12 (ddd, JH4,H5a  = 9 Hz, JH4,H3  = 4.5 Hz, JH4,H5b  = 4 Hz, 1 H, H4), 3.99–3.95 (m, 1 H, H2), 3.93–3.86 (m, 2 H, H1, H3), 3.70 (s, 3 H, OCH3), 3.66 (dd, JH6,H5b  = 8 Hz, JH6,H5a  = 4.5 Hz, 1 H, H6), 3.63, 3.59 (AB from ABX, JA,B  = 11.5 Hz, JA,X  = 6 Hz, JB,X  = 5.5 Hz, 2 H, CH2OH), 2.19 (ddd, JH5a,H5b  = 14 Hz, JH5a,H4  = 9 Hz, JH5a,H6  = 4.5 Hz, 1 H, H5a), 1.86 (ddd, JH5b,H5a  = 14 Hz, JH5b,H6  = 8 Hz, JH5b,H4  = 4 Hz, 1 H, H5b). 13C NMR (125 MHz, CD3OD): δ = 176.8 (CO2CH3), 139.4, 139.3, 129.4, 129.0, 128.9, 128.8 (CAr), 86.1, 84.8, 84.7 (C1, C2, C3), 79.2 (C4), 72.7, 72.5 (CH2Ph), 63.9 (CH2OH), 53.0 (C6), 52.6 (OCH3), 34.4 (C5). HRMS: m/z [M + H]+ calcd for C23H30NO6: 416.2073; found: 416.2065
  • 32 Bonnac LF, Gao G.-Y, Chen L, Patterson SE, Jayaram HN, Pankiewicz KW. Nucleosides Nucleotides Nucleic Acids 2007; 26: 1249
  • 33 Selected Physical and Spectroscopic Data for Compound 8 Colourless oil; yield: 88 mg (32%); Rf  = 0.26 (CH2Cl2–MeOH–Et3N, 15:1:2‰). 1H NMR (500 MHz, CD3OD): δ = 4.35 (ddd, JH4,H5a  = 7.5 Hz, JH4,H5b  = 5.0 Hz, JH4,H3  = 3.5 Hz, H4, 1 H), 4.12 (ddd, JH6,H5b  = 10.0 Hz, JH6,H5a  = JH6,H8  = 3.5 Hz, 1 H, H6), 4.00 (dd, JH2,H3  = 3.0 Hz, JH2,H1  = 1.4 Hz, 1 H, H2), 3.90 (m, 2 H, H8, H6), 3.75 (m, 1 H, H1), 3.73 (s, 3 H, OCH3), 3.69 (m, 2 H, CH2OH), 2.48 (ddd, JH5a,H5b  = 13.5 Hz, JH5a,H4  = 7.5 Hz, JH5a,H6  = 3.5 Hz, 1 H, H5a), 2.16 (dqq, JH9,H10a  = JH9,H10b  = 6.8 Hz, JH9,H8  = 3.5 Hz, 1 H, H9), 1.77 (ddd, JH5b,H5a  = 13.5 Hz, JH5b,H6  = 10.0 Hz, JH5b,H4  = 5.0 Hz, 1 H, H5b), 0.99 (d, JH10a,H9  = 6.8 Hz, 3 H, H10a), 0.90 (d, JH10b,H9  = 6.7 Hz, 3 H, H10). 13C NMR (125 MHz, CD3OD): δ = 174.3 (C7), 162.1 (C7′), 87.3 (C1), 80.6 (C3), 80.4 (C2), 79.7 (C4), 63.9 (CH2OH), 59.9 (C8), 56.5 (C6), 53.8 (O–CH3), 34.5 (C5), 34.1 (C9), 18.8, 17.5 (C10). HRMS (ESI+): m/z [M + H]+ calcd for C14H24N2NaO6: 339.1532 [M + Na]+, found: 339.1535. HRMS (ESI): m/z [M + H]+ calcd for C14H23N2O6: 315.1562 (M – H), found: 315.1559.
  • 34 Selected Physical and Spectroscopic Data for Compound 9 Colourless oil; yield: 666 mg (43%); Rf  = 0.18 (cyclohexane–EtOAc–Et3N, 4:1:3‰). IR (ATR): 2974, 1691, 1455, 1366, 1307, 1236, 1182, 1093, 1035, 735, 698 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.33–7.15 (m, 10 H, HAr), 4.55–4.44 (m, 3 H, CH2Ph, H4), 4.40, 4.35 (AB, JA,B  = 12.0 Hz, 2 H, CH2Ph), 4.16–3.96 (m, 6 H, OCH2CH3, H1, H6), 3.96–3.88 (m, 1 H, H2), 3.87–3.82 (m, 2 H, H8, H3), 3.71, 3.58 (AB from ABX, J A,B = 11.6 Hz, J A,X = 3.9 Hz, J B,X = 3.6 Hz, 2 H, CH2OH), 2.78 (br s, 1 H, OH), 2.37 (ddd, JH5a,H5b  = 13.8 Hz, JH5a,H6  = 9.4 Hz, JH5a,H4  = 3.5 Hz, 1 H, H5a), 2.21 (dqq, JH9,H10a  = JH9,H10b  = 7.0 Hz, JH9,H8  = 3.5 Hz, 1 H, H9), 1.70 (ddd, JH5b,H5a  = 13.8 Hz, JH5b,H6  = 10.4 Hz, JH5b,H4  = 3.7 Hz, 1 H, H5b), 1.24–1.14 (m, 6 H, CH3CH2), 0.98 (d, JH10a,H9  = 7.0 Hz, 3 H, H10a), 0.68 (d, JH10b,H9  = 7.0 Hz, 3 H, H10b). 13C NMR (500 MHz, CDCl3): δ = 163.6 (C7), 163.1 (C7′), 138.0, 137.9, 128.5, 128.4, 127.9, 127.8, 127.7, 127.6 (CAr), 83.8 (2s, C2, C3), 83.3 (C1), 77.9 (C4), 72.0 (CH2Ph), 71.4 (CH2Ph), 63.0 (CH2OH), 60.9 (C8), 60.8, 60.7 (CH2CH3), 53.2 (C6), 34.0 (C5), 32.0 (C9), 19.2, 17.0 (C10), 14.4 (CH2 CH3). LRMS (ESI): m/z (%) = 539 (100) [M + H]+, 1099 (10) [2M + Na]+. HRMS (ESI): m/z [M + H]+ calcd for C31H43N2O6: 539.3121; found 539.3134.
  • 35 Selected Physical and Spectroscopic Data for Compound 10 White solid; yield: 44 mg (48%); Rf = 0.15 (CH2Cl2–MeOH–Et3N, 20:1:3‰). 1H NMR (500 MHz, CDCl3): δ = 1H NMR (500 MHz, CDCl3): 4.19 (ddd, JH4,H5b  = 9.2 Hz, JH4,H5a  = 5.1 Hz, JH4,H3  = 3.5 Hz, 1 H, H4), 4.16 (br s, 1 H, H2), 4.18–3.99 (m, 4 H, CH2CH3, H3), 3.97–3.91 (m, 1 H, CH2CH3,), 3.90 (dd, JH8,H9  = 3.8 Hz, JH8,H6  = 3.5 Hz, 1 H, H8), 3.83 (ddd, JH1,CHbOH  = 4.0 Hz, JH1,CHaOH  = 3.6 Hz, JH1,H2  = 3.0 Hz, 1 H, H1), 3.78 (ddd, 3JH6,H5b  = 10.6 Hz, 3 JH6,5a  = 2.0 Hz, JH6,H8  = 3.5 Hz, 1 H, H6), 3.73 (dd, JCHaOH,CHbOH  = 12.0 Hz, JCHaOH,H1  = 3.6 Hz, 1 H, CHaOH), 3.67 (dd, JCHbOH,CHaOH  = 12.0 Hz, JCHbOH,H1  = 4.0 Hz, 1 H, CHbOH), 2.57 (ddd, JH5a,H5b  = 14.0 Hz, JH5a,H4  = 5.1 Hz, JH5a,H6  = 2.0 Hz, 1 H, H5a), 2.13 (dqq, JH9,H10a  = JH9,H10b  = 7.0 Hz, JH9,H8  = 3.8 Hz, 1 H, H9), 1.74 (ddd, JH5b,H5a  = 14.0 Hz, JH5b,H6  = 10.6 Hz, JH5b,H4  = 9.2 Hz, 1 H, H5b), 1.26–1.16 (m, 6 H, HCH3), 0.97 (d, JH10a,H9  = 7.0 Hz, 3 H, H10a), 0.72 (d, JH10b,H9  = 7.0 Hz, 3 H, H10b). 13C NMR (500 MHz, CDCl3): δ = 166.9 (C7), 163.8 (C7′), 87.2 (C1), 83.0 (C4), 80.5 (C2), 79.6 (C3), 64.2 (CH2OH), 63.0 (C8), 62.7 (CH2CH3), 54.0 (C6), 34.8 (C5), 34.0 (C9), 20.5, 18.8 (C10), 15.7, 15.6 (CH2CH3). LRMS (ESI): m/z (%) = 359 (100) [M + H]+.