Synlett 2016; 27(11): 1748-1752
DOI: 10.1055/s-0035-1561971
letter
© Georg Thieme Verlag Stuttgart · New York

Ru-MACHO-Catalyzed Highly Chemoselective Hydrogenation of α-Keto Esters to 1,2-Diols or α-Hydroxy Esters

Shaochan Gao
a   Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, P. R. of China   Email: tangwj@snnu.edu.cn   Email: j.xiao@liv.ac.uk
,
Weijun Tang*
a   Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, P. R. of China   Email: tangwj@snnu.edu.cn   Email: j.xiao@liv.ac.uk
,
Minghui Zhang
a   Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, P. R. of China   Email: tangwj@snnu.edu.cn   Email: j.xiao@liv.ac.uk
,
Chao Wang
a   Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, P. R. of China   Email: tangwj@snnu.edu.cn   Email: j.xiao@liv.ac.uk
,
Jianliang Xiao*
a   Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, and School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710119, P. R. of China   Email: tangwj@snnu.edu.cn   Email: j.xiao@liv.ac.uk
b   Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
› Author Affiliations
Further Information

Publication History

Received: 30 January 2016

Accepted after revision: 14 March 2016

Publication Date:
05 April 2016 (online)


Abstract

A ruthenium pincer catalyst has been shown to be highly effective for the hydrogenation of a wide range of α-keto esters, affording either diols or hydroxy esters depending on the choice of reaction conditions. Strong base, high temperature, and pressure favor the formation of diols whilst the opposite is true for the hydroxy esters.

Supporting Information

 
  • References and Notes

  • 1 Carruthers W, Coldham I In Modern Methods of Organic Synthesis . Cambridge University Press; Cambridge: 2004. 4th ed. 405
    • 2a Greeves N In Comprehensive Organic Synthesis: Selectivity, Strategy, and Efficiency in Modern Organic Chemistry . Trost BM, Fleming I. Pergamon Press; Oxford, NY: 1991. 1st ed., Vol. 8 1
    • 2b Seyden-Penne J. Reductions by the Alumino- and Borohydrides in Organic Synthesis. Wiley-VCH; New York: 1997. 2nd ed.
  • 3 Bullock RM In The Handbook of Homogeneous Hydrogenation . de Vries JG, Elsevier CJ. Wiley-VCH; Weinheim: 2008
    • 4a Bullock RM. Chem. Eur. J. 2004; 10: 2366
    • 4b Noyori R, Ohkuma T. Angew. Chem. Int. Ed. 2001; 40: 40
    • 5a Rieke RD, Thakur DS, Roberts BD, White GT. J. Am. Chem. Soc. 1997; 74: 333
    • 5b Pouilloux Y, Autin F, Barrault J. Catal. Today 2000; 63: 87
    • 5c Adkins H. Org. React. 1954; 8: 1

      For recent examples on Fe-catalytic hydrogenation of esters, see:
    • 6a Dupau P, Do ML. T, Gaillard S, Renaud JL. Angew. Chem. Int. Ed. 2014; 53: 13004
    • 6b Werkmeister S, Junge K, Wendt B, Alberico E, Jiao HJ, Baumann W, Junge H, Gallou F, Beller M. Angew. Chem. Int. Ed. 2014; 53: 8722
    • 6c Zell T, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2014; 53: 4685
    • 6d Chakraborty S, Dai HG, Bhattacharya P, Fairweather NT, Gibson MS, Krause JA, Guan HR. J. Am. Chem. Soc. 2014; 136: 7869
    • 6e Lu LQ, Li YH, Junge K, Beller M. Angew. Chem. Int. Ed. 2013; 52: 8382
    • 6f Junge K, Wendt B, Zhou SL, Beller M. Eur. J. Org. Chem. 2013; 2061
  • 7 For Co-catalytic hydrogenation of esters, see: Srimani D, Mukherjee A, Goldberg AF. G, Leitus G, Diskin-Posner Y, Shimon LJ. W, Ben David Y, Milstein D. Angew. Chem. Int. Ed. 2015; 54: 12357

    • For recent examples on Ru-catalytic hydrogenation of esters, see:
    • 8a Filonenko GA, Aguila MJ. B, Schulpen EN, van Putten R, Wiecko J, Muller C, Lefort L, Hensen EJ. M, Pidko EA. J. Am. Chem. Soc. 2015; 137: 7620
    • 8b Tan XF, Wang Y, Liu YH, Wang FY, Shi LY, Lee KH, Lin ZY, Lv H, Zhang XM. Org. Lett. 2015; 17: 454
    • 8c Tan XF, Wang QL, Liu YH, Wang FY, Lv H, Zhang XM. Chem. Commun. 2015; 51: 12193
    • 8d Chen T, Li HF, Qu SL, Zheng B, He LP, Lai ZP, Wang ZX, Huang KW. Organometallics 2014; 33: 4152
    • 8e Westerhaus FA, Wendt B, Dumrath A, Wienhofer G, Junge K, Beller M. ChemSusChem 2013; 6: 1001
    • 8f Kuriyama W, Matsumoto T, Ogata O, Ino Y, Aoki K, Tanaka S, Ishida K, Kobayashi T, Sayo N, Saito T. Org. Process Res. Dev. 2012; 16: 166
    • 8g Zhang J, Leitus G, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2006; 45: 1113
    • 8h Saudan LA, Saudan CM, Debieux C, Wyss P. Angew. Chem. Int. Ed. 2007; 46: 7473
  • 9 For Ir-catalytic hydrogenation of esters, see: Junge K, Wendt B, Jiao HJ, Beller M. ChemCatChem 2014; 6: 2810

    • For Os-catalytic hydrogenation of esters, see:
    • 10a Spasyuk D, Vicent C, Gusev DG. J. Am. Chem. Soc. 2015; 137: 3743
    • 10b Spasyuk D, Smith S, Gusev DG. Angew. Chem. Int. Ed. 2012; 51: 2772
    • 10c Spasyuk D, Gusev DG. Organometallics 2012; 31: 5239
    • 10d Acosta-Ramirez A, Bertoli M, Gusev DG, Schlaf M. Green Chem. 2012; 14: 1178

      Typical examples, see:
    • 11a Smith AB. III, Chen SS.-Y, Nelson FC, Reichert JM, Salvatore BA. J. Am. Chem. Soc. 1995; 117: 12013
    • 11b Pye PJ, Rossen K, Weissman SA, Maliakal A, Reamer RA, Ball R, Tsou NN, Volante RP, Reider PJ. Chem. Eur. J. 2002; 8: 1372
    • 11c Kang SH, Jeong JW, Hwang YS, Lee SB. Angew. Chem. Int. Ed. 2002; 41: 1392
    • 11d Gupta P, Naidu SV, Kumar P. Tetrahedron Lett. 2004; 45: 849
    • 11e Edagwa BJ, Taylor CM. J. Org. Chem. 2009; 74: 4132
  • 12 Schröder M. Chem. Rev. 1980; 80: 187

    • For reviews, see:
    • 13a Beletskaya I, Moberg C. Chem. Rev. 2006; 106: 2320
    • 13b Burks HE, Morken JP. Chem. Commun. 2007; 4717

    • For typical examples, see:
    • 13c Kliman LT, Mlynarski SN, Morken JP. J. Am. Chem. Soc. 2009; 131: 13210
    • 13d Burks HE, Kliman LT, Morken JP. J. Am. Chem. Soc. 2009; 131: 9134
    • 13e Kliman LT, Mlynarski SN, Ferris GE, Morken JP. Angew. Chem. Int. Ed. 2012; 51: 521
    • 13f Ferris GE, Hong K, Roundtree IA, Morken JP. J. Am. Chem. Soc. 2013; 135: 2501
    • 13g Toribatake K, Nishiyama H. Angew. Chem. Int. Ed. 2013; 52: 11011

      For typical examples, see:
    • 14a Hodgkinson R, Jurčík V, Zanotti-Gerosa A, Nedden HG, Blackaby A, Clarkson GJ, Wills M. Organometallics 2014; 33: 5517
    • 14b Touge T, Hakamata T, Nara H, Kobayashi T, Sayo N, Saito T, Kayaki Y, Ikariya T. J. Am. Chem. Soc. 2011; 133: 14960
    • 14c Kadyrov R, Koenigs RM, Brinkmann C, Voigtlaender D, Rueping M. Angew. Chem. Int. Ed. 2009; 48: 7556
    • 14d Ohkuma T, Utsumi N, Watanabe M, Tsutsumi K, Arai N, Murata N. Org. Lett. 2007; 9: 2565
    • 14e Saito T, Yokozawa T, Ishizaki T, Moroi T, Sayo N, Miura T, Kumobayashi H. Adv. Synth. Catal. 2001; 343: 264
    • 15a Monnereau L, Cartigny D, Scalone M, Ayad T, Ratovelomanana-Vidal V. Chem. Eur. J. 2015; 21: 11799
    • 15b Zhang H, Feng DD, Sheng HB, Ma XB, Wan JW, Tang Q. RSC Adv. 2014; 4: 6417
    • 15c Xu H, Meng QH, Zhang ZG. Chin. J. Chem. 2008; 26: 1656
    • 15d Clarke ML, France MB, Knight FR, Frew JJ. R, Roff GJ. Synlett 2007; 1739
    • 16a Yudin KA In Aziridines and Epoxides in Organic Synthesis . Wiley-VCH; Weinheim: 2006
    • 16b Tokunaga M, Larrow JF, Kakiuchi F, Jacobsen EN. Science 1997; 277: 936
    • 16c Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN. J. Am. Chem. Soc. 2002; 124: 1307
  • 17 For a review, see: Bala N, Chimni SS. Tetrahedron: Asymmetry 2010; 21: 2879
    • 18a Shi L, Liu YY, Liu QF, Wei B, Zhang GS. Green Chem. 2012; 14: 1372
    • 18b Kim J, De Castro KA, Lim M, Rhee H. Tetrahedron 2010; 66: 3995
    • 18c Wang GY, Hu JB, Zhao G. Tetrahedron: Asymmetry 2004; 15: 807
    • 18d Collot V, Schmitt M, Marwah P, Bourguignon J. Heterocycles 1999; 51: 2823
    • 18e Meijer LH. P, Pandit UK. Tetrahedron 1985; 41: 467
    • 19a Hayes JM, Deydier E, Ujaque G, Lledos A, Malacea-Kabbara R, Manoury E, Vincendeau S, Poli R. ACS Catal. 2015; 5: 4368
    • 19b Sandoval CA, Ohkuma T, Muniz K, Noyori R. J. Am. Chem. Soc. 2003; 125: 13490
    • 19c Abdur-Rashid K, Clapham SE, Hadzovic A, Harvey JN, Lough AJ, Morris RH. J. Am. Chem. Soc. 2002; 124: 15104
  • 20 Typical Procedures for Hydrogenation of α-Keto Esters with Ru-MACHO A glass liner containing a stir bar was charged with substrate (0.5 mmol), base (0.05 mmol), Ru-MACHO (5 μmol) and MeOH (0.5 mL) in a glove box. The glass liner was then placed into an autoclave followed by degassing with H2 three times. The hydrogenation was carried out at 10–50 bar H2 with stirring at 80 °C for 12–24 h. After the reaction finished, the autoclave was allowed to cool down to r.t. The hydrogen gas was then carefully released in a fume hood, and the solution transferred to a flask with H2O (2 mL), extracted with CH2Cl2 (3 × 5 mL), dried with Na2SO4, and concentrated in vacuo to afford the pure product 2as or 3as (see Supporting Information). Compound 2a: 91% yield, white solid; mp 56–58 °C. 1H NMR (400 MHz, CDCl3): δ = 7.28–7.38 (m, 5 H), 4.83 (dd, J = 3.6, 8.1 Hz, 1 H), 3.76–3.79 (m, 1 H), 3.65–3.70 (m, 1 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 140.6, 128.7, 128.2, 126.2, 74.8, 68.2 ppm. MS (EI): m/z calcd for C8H10O2 [M + Na]+: 161.0578; found: 161.0561. Compound 3a: 98% yield, colorless liquid. 1H NMR (400 MHz, CDCl3): δ = 7.33–7.43 (m, 1 H), 5.19 (s, 1 H), 3.75 (s, 3 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 174.3, 138.3, 128.7, 128.7, 126.7, 73.0, 53.2 ppm. ESI-HRMS: m/z calcd for C9H10O3 [M + Na]+: 189.0528; found: 189.0510.
    • 21a Yang W, Pan XJ, Yang DQ. Chin. J. Org. Chem. 2015; 35: 1216
    • 21b Steward KM, Gentry EC, Johnson JS. J. Am. Chem. Soc. 2012; 134: 7329
    • 21c Wang CJ, Sun XF, Zhang XM. Synlett 2006; 1169