Synthesis 2016; 48(17): 2851-2862
DOI: 10.1055/s-0035-1561645
paper
© Georg Thieme Verlag Stuttgart · New York

A New Synthesis of 2-Aminoindoles and 6-Aminopyrrolo[3,2-d]pyrimidines from π-Deficient 1,2-Dihaloarenes and Geminal Enediamines

Maria S. Mishina
St. Petersburg State University, 198504 St. Petersburg, Russian Federation   Email: d.dariin@spbu.ru
,
Alexander Yu. Ivanov
St. Petersburg State University, 198504 St. Petersburg, Russian Federation   Email: d.dariin@spbu.ru
,
Pavel S. Lobanov
St. Petersburg State University, 198504 St. Petersburg, Russian Federation   Email: d.dariin@spbu.ru
,
Dmitrii V. Dar’in*
St. Petersburg State University, 198504 St. Petersburg, Russian Federation   Email: d.dariin@spbu.ru
› Author Affiliations
Further Information

Publication History

Received: 26 February 2016

Accepted after revision: 18 April 2016

Publication Date:
24 May 2016 (online)


Abstract

An efficient approach for the synthesis of fused 2-aminopyrroles via geminal enediamines and π-deficient 1,2-dihaloarenes is presented. The two-step methodology includes aromatic nucleophilic substitution of the activated halogen of dihaloarene with enediamine C-nucleophilic center followed by Cu-catalyzed intramolecular N-arylation. This approach allows access to a variety of 2-amino-6-nitroindoles and 6-aminopyrrolo[3,2-d]pyrimidines (including N-mono- and N,N-disubstituted) in moderate and good yields under mild conditions.

Supporting Information

 
  • References


    • For recent reviews on indole synthesis, see:
    • 1a Vicente R. Org. Biomol. Chem. 2011; 9: 6469
    • 1b Taber DF, Tirunahari PK. Tetrahedron 2011; 67: 7195
    • 1c Kim JH, Lee S.-g. Synthesis 2012; 44: 1464
    • 1d Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
    • 1e Platon M, Amardeil R, Djakovitch L, Hierso J.-C. Chem. Soc. Rev. 2012; 41: 3929
    • 1f Guo T, Huang F, Yu L, Yu Z. Tetrahedron Lett. 2015; 56: 296
    • 1g Gupta N, Goyal D. Chem. Heterocycl. Compd. 2015; 51: 4
    • 1h Bartoli G, Dalpozzo R, Nardi M. Chem. Soc. Rev. 2014; 43: 4728
    • 1i Wu H, Hea Y.-P, Shi F. Synthesis 2015; 47: 1990

      For reviews on indole-containing natural compounds, see:
    • 2a Marcos IS, Moro RF, Costales I, Basabe P, Díez D. Nat. Prod. Rep. 2013; 30: 1509
    • 2b Lindel T, Marsch N, Adla SK. Top. Curr. Chem. 2012; 309: 67
    • 2c Fu L. Top. Heterocycl. Chem. 2010; 26: 433
    • 2d Singla R, Negi A, Sing V. PharmaTutor 2014; 2: 76
    • 2e Melander RJ, Minvielle MJ, Melander C. Tetrahedron 2014; 70: 6363
    • 2f Almagro L, Fernández-Pérez F, Angeles PedreñoM. Molecules 2015; 20: 2973

      For reviews on biologically active indole derivatives, see:
    • 3a Kaushik NK, Kaushik N, Attri P, Kumar N, Kim CH, Verma AK, Choi EH. Molecules 2013; 18: 6620
    • 3b Lalit K, Shashi B, Kamal J. Int. J. Res. Pharm. Sci. 2012; 2: 23
    • 3c Sharma V, Kumar P, Pathak D. J. Heterocycl. Chem. 2010; 47: 491
    • 3d Biswal S, Sahoo U, Sethy S, Kumar HK. S, Banerjee M. Asian J. Pharm. Clin. Res. 2012; 5: 1
    • 3e Zhang M.-Z, Chen Q, Yang G.-F. Eur. J. Med. Chem. 2015; 89: 421
    • 3f Sherer C, Snape TJ. Eur. J. Med. Chem. 2015; 97: 552
    • 3g Zhao F, Liu N, Zhan P, Jiang X, Liu X. Eur. J. Med. Chem. 2015; 94: 218
  • 4 Barden TC. Top. Heterocycl. Chem. 2011; 26: 31
    • 5a Clinch K, Evans GB, Fröhlich RF. G, Gulab SA, Gutierrez JA, Mason JM, Schramm VL, Tyler PC, Woolhouse AD. Bioorg. Med. Chem. 2012; 20: 5181
    • 5b Diana P, Stagno A, Barraja P, Carbone A, Parrino B, Dall’Acqua F, Vedaldi D, Salvador A, Brun P, Castagliuolo I, Issinger OG, Cirrincione G. ChemMedChem 2011; 6: 1291
    • 5c Kawakita Y, Banno H, Ohashi T, Tamura T, Yusa T, Nakayama A, Miki H, Iwata H, Kamiguchi H, Tanaka T, Habuka N, Sogabe S, Ohta Y, Ishikawa T. J. Med. Chem. 2012; 55: 3975
    • 5d Haraguchi K, Horii C, Yoshimura Y, Ariga F, Tadokoro A, Tanaka H. J. Org. Chem. 2011; 76: 8658
    • 5e Sogabe S, Kawakita Y, Igaki S, Iwata H, Miki H, Cary DR, Takagi T, Takagi S, Ohta Y, Ishikawa T. ACS Med. Chem. Lett. 2013; 4: 201
    • 6a Zhao L, Tao K, Li H, Zhang J. Tetrahedron 2011; 67: 2803
    • 6b Zhang W, Liu J, Stashko MA, Wang X. ACS Comb. Sci. 2013; 15: 10
    • 6c Cikotiene I, Pudziuvelyte E, Brukstus A. Synlett 2010; 1107
    • 6d Wang K, Herdtweck E, Dömling A. ACS Comb. Sci. 2011; 13: 140
    • 7a Jiang M, Xiang H, Zhu F, Xu X, Deng L, Yang C. Org. Biomol. Chem. 2015; 13: 10122
    • 7b Barraja P, Diana P, Lauria A, Montalbano A, Almerico AM, Dattolo G, Cirrincione G. Heterocycles 2003; 60: 2519
    • 7c Shi J, Zhao G, Wang X, Xu HE, Yi W. Org. Biomol. Chem. 2014; 12: 6831
    • 7d Shu C, Wang Y.-H, Zhou B, Li X.-L, Ping Y.-F, Lu X, Ye L.-W. J. Am. Chem. Soc. 2015; 137: 9567
    • 8a Barberis C, Gordon N, Thomas C, Zhang X, Cusack KP. Tetrahedron Lett. 2005; 46: 8877
    • 8b Kwong FY, Klapars A, Buchwald SL. Org. Lett. 2002; 4: 581
    • 8c Melkonyan FS, Karchava AV, Yurovskaya MA. J. Org. Chem. 2008; 73: 4275
    • 8d Melkonyan FS, Topolyan AP, Karchava AV, Yurovskaya MA. Chem. Heterocycl. Compd. 2010; 46:  1158
    • 8e Vaswani RG, Albrecht BK, Audia JE. Org. Lett. 2014; 16: 4114

      For reviews on geminal enediamines in heterocyclic synthesis, see:
    • 9a Lobanov PS, Dar’in DV. Chem. Heterocycl. Compd. 2013; 49:  507
    • 9b Dar’in DV, Lobanov PS. Russ. Chem. Rev. 2015; 84: 601
  • 10 Mishina MS, Ivanov AYu, Dar’in DV, Lobanov PS. Chem. Heterocycl. Compd. 2013; 49:  648
    • 11a Igumnova EM, Selivanov SI, Dar’in DV, Lobanov PS. Chem. Heterocycl. Compd. 2012; 48:  436
    • 11b Vypolzov AV, Dar’in DV, Lobanov PS. Russ. Chem. Bull., Int. Ed. 2012; 61:  877
  • 12 The two main by-products identified by means of 1H NMR and HRMS proved to be 4-amino- and 4-(pyrrolidin-1-yl)-substituted 5-iodo-2-methylsulfanylpyrimidines, resulting from pyrimidine 3a via substitution of chlorine atom with NH3 and pyrrolidine, respectively. Ammonia and pyrrolidine are probably the products of enediamine 1c degradation during the reaction.