Synthesis 2016; 48(07): 1002-1010
DOI: 10.1055/s-0035-1561325
paper
© Georg Thieme Verlag Stuttgart · New York

Microwave-Assisted Synthesis of Aromatic and Aliphatic Triesters of Resveratrol

Alicja Urbaniak
a   Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
,
Beata Warżajtis
b   Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland   Email: karol.kacprzak@gmail.com
,
Urszula Rychlewska
b   Department of Crystallography, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland   Email: karol.kacprzak@gmail.com
,
Karol Kacprzak*
a   Department of Bioorganic Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Umultowska 89b, 61-614 Poznań, Poland
› Author Affiliations
Further Information

Publication History

Received: 17 November 2015

Accepted after revision: 14 December 2015

Publication Date:
26 January 2016 (online)


Abstract

Despite intense research on resveratrol, its aromatic esters remain largely unknown. Presented here is a practical, simple, and general protocol for the microwave-assisted preparation of aromatic and aliphatic triesters of resveratrol. Two developed protocols that use conventional and microwave heating, respectively, were compared. Classical reflux led to sluggish esterification, in contrast to microwave-assisted synthesis, which increased the yield and reduced the reaction time from hours to minutes. This microwave protocol was used to synthesize ten aromatic and aliphatic triesters of resveratrol, including resveratryl tricinnamate, tri-3,4-dimethoxycinnamate, tri-2,6-dichlorobenzoate, tri-4-nitrobenzoate, tri-2,3-dimethoxybenzoate, and tri-3,4,5-trimethoxybenzoate, which had not previously been described. Reliable crystallization of all aromatic and some aliphatic triesters was found to be a valuable alternative to time-consuming purification by column chromatography. Crystal structures of resveratryl triisobutyrate and tri-2,6-dichlorobenzoate were determined by X-ray diffraction and were critically compared.

Supporting Information

 
  • References

    • 1a Fernández-Mar MI, Mateos R, García-Parrilla MC, Puertas B, Cantos-Villar E. Food Chem. 2012; 130: 797
    • 1b Sanders TH, McMichael RW. Jr, Hendrix KW. J. Agric. Food Chem. 2000; 48: 1243
  • 2 Stojanović S, Sprinz H, Brede O. Arch. Biochem. Biophys. 2001; 391: 79
  • 3 Bishayee A, Barnes KF, Bhatia D, Darvesh AS, Carroll RT. Cancer Prev. Res. 2010; 6: 753
  • 4 Brisdelli F, D’Andrea G, Bozzi A. Curr. Drug Metab. 2009; 10: 530
  • 5 Lappano R, Rosano C, Madeo A, Albanito L, Plastina P, Gabriele B, Forti L, Stivala LA, Iacopetta D, Dolce V, Andò S, Pezzi V, Maggiolini M. Mol. Nutr. Food Res. 2009; 53: 845
  • 6 Hung LM, Chen JK, Huang SS, Lee RS, Su MJ. Cardiovasc. Res. 2000; 47: 549
  • 7 Sun B, Hoshino J, Jermihov K, Marler L, Pezzuto JM, Mesecar AD, Cushman M. Bioorg. Med. Chem. 2010; 18: 5352
    • 8a Baur J, Sinclair DA. Nat. Rev. Drug Discov. 2006; 5: 493
    • 8b Amri A, Chaumeil JC, Sfar S, Charrueau C. J. Controlled Release. 2012; 158: 182
    • 9a Pettit GR, Melody N, Thornhill A, Knight JC, Groy TL, Herald CL. J. Nat. Prod. 2009; 72: 1637
    • 9b Das J, Pany S, Majhi A. Bioorg. Med. Chem. 2011; 19: 5321
    • 9c Murias M, Handler N, Erker T, Pleban K, Ecker G, Saiko P, Szekeresb T, Jager W. Bioorg. Med. Chem. 2004; 12: 5571
    • 9d Kang SS, Cuendet M, Endringer DC, Croy VL, Pezzutob JM, Lipton MA. Bioorg. Med. Chem. 2009; 17: 1044
    • 9e de Lima DP, Rotta R, Beatriz A, Marques MR, Montenegro RC, Vasconcellos MC, Pessoa C, de Moraes MO, Costa-Lotufo LV, Frankland Sawaya AC. H, Berlin MN. Eur. J. Med. Chem. 2009; 44: 701
    • 9f Roberti M, Pizzirani D, Simoni D, Rondanin R, Baruchello R, Bonora C, Buscemi F, Grimaudo S, Tolomeo M. J. Med. Chem. 2003; 46: 3546
    • 9g Gabriele B, Benabdelkamel H, Plastina P, Fazio A, Sindona G, Di Donna L. Synthesis 2008; 2953
  • 10 Esterification: Methods, Reactions, and Applications . 2nd ed.; Otera J, Nishikido J. Wiley-VCH; Weinheim: 2010
  • 11 Acerson MJ, Andrus MB. Tetrahedron Lett. 2014; 55: 757
    • 12a Nicolosi G, Spatafora C, Triangli C. J. Mol. Catal. B: Enzym. 2002; 16: 223
    • 12b Kuo CH, Hsiao FW, Dai SM, Chang CM. J, Lee CC, Liu YC, Shieh CJ. Bioprocess Biosyst. Eng. 2012; 35: 1137
    • 12c Torres P, Reyes-Duarte D, Ballesteros A, Plou FJ. Methods Mol. Biol. (N. Y., NY, U. S.) 2012; 861: 435
    • 13a Mattarei A, Carrao M, Azzolini M, Paradisi C, Zoratti M, Biasutto L. Molecules 2014; 19: 15900
    • 13b Dobrydneva Y, Williams RL, Morris GZ, Blackmore PF. J. Cardiovasc. Pharmacol. 2002; 40: 399
    • 13c Sethi M, Taneja S. Phytochemistry. 1980; 19: 1831
    • 13d Chaudhar M, Jain GK, Sarin JP, Khanna NM. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem. 1983; 22: 1163
    • 13e Cardile V, Lombardo L, Spatafora C, Tringali C. Bioorg. Chem. 2005; 33: 22
    • 14a Andrus MB, Liu J. Tetrahedron Lett. 2006; 47: 5811
    • 14b Acerson MJ, Fabick KM, Wong Y, Blake C, Lephart ED, Andrus MB. Bioorg. Med. Chem. Lett. 2013; 23: 2941
    • 14c Wong Y, Osmond G, Brewer KI, Tyler DS, Andrus MB. Bioorg. Med. Chem. Lett. 2010; 20: 1198
    • 14d Andrus MB, Liu J, Meredith EL, Nartey E. Tetrahedron Lett. 2003; 44: 4819
  • 15 Nonomura S, Kanagawa H, Makimoto A. Yakugaku Zasshi 1963; 83: 988
  • 16 Yamada YM. A, Takeda K, Takahashi H, Ikegami S. Tetrahedron 2004; 60: 4097
    • 17a Miyazawa T, Yamamoto M, Maeda Y. Synth. Commun. 2009; 39: 1092
    • 17b Li N.-G, Shi Z.-H, Tang Y.-P, Li B.-Q, Duan J.-A. Molecules 2009; 14: 2118
  • 18 Tang L, Dai D, Gong Y, Zhong J. Acta Crystallogr., Sect. E 2011; 67: o3129
  • 19 Allen FH. Acta Crystallogr., Sect. B 2002; 58: 380
  • 20 Adams JM, Morsi SE. Acta Crystallogr., Sect. B 1976; 32: 1345
  • 21 Shibakami M, Sekiya A. Acta Crystallogr., Sect. C 1995; 51: 326
  • 22 Valkonen A, Lahtinen M, Tamminen J, Kolehmainen E. J. Mol. Struct. 2008; 886: 197
  • 23 Li H, Liu L, Wang Z, Zhao F, Zhang S, Zhang W.-X, Xi Z. Chem. Eur. J. 2011; 17: 7399
  • 24 Qadeer G, Rama NH, Malik MA, Helliwell M. Acta Crystallogr., Sect. E 2007; 63: o3027
  • 25 Ishihara K, Gao Q, Yamamoto H. J. Am. Chem. Soc. 1993; 115: 10412
  • 26 Khan I, Ibrar A, White JM. Crystals 2012; 2: 521
    • 27a Potts R, Guy R. Pharm. Res. 1992; 9: 663
    • 27b Kupczewska-Dobecka M, Jakubowski M, Czerczak S. Environ. Toxicol. Pharmacol. 2010; 30: 95
  • 28 CrysAlis PRO . Agilent Technologies; Yarnton: 2014
  • 29 Sheldrick GM. Acta Crystallogr., Sect. A 2008; 64: 112
  • 30 Sheldrick GM. Acta Crystallogr., Sect. C 2015; 71: 3
  • 31 Bruno IJ, Cole JC, Edgington PR, Kessler MK, Macrae CF, McCabe P, Pearson J, Taylor R. Acta Crystallogr., Sect. B 2002; 58: 389
  • 32 Crystallographic data for compounds 4 and 9 have been deposited with the accession numbers CCDC 1421392 and 1421393, respectively, and can be obtained free of charge from the Cambridge­ Crystallographic Data Centre, 12 Union Road, Cambridge­ CB2 1EZ, UK, Fax: +44(1223)336033, E-mail: deposit@ccdc.cam.ac.uk, Web site: www.ccdc.cam.ac.uk/conts/retrieving.html.