Synlett 2016; 27(02): 221-224
DOI: 10.1055/s-0035-1560662
letter
© Georg Thieme Verlag Stuttgart · New York

Cobalt-Containing Mesoporous ZSM-5 Zeolite Catalyzed C=C Bond Cleavage of Alkenes To Form Nitriles

Shuling Xu
a   College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. of China   Email: yunzhi@njtech.edu.cn
,
Tianhao Cai
b   Department of Chemical & Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
,
Zhi Yun*
a   College of Chemistry and Chemical Engineering, Nanjing Tech University, Nanjing, Jiangsu 210009, P. R. of China   Email: yunzhi@njtech.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 05 August 2015

Accepted after revision: 13 September 2015

Publication Date:
09 October 2015 (online)


Abstract

Cobalt-containing mesoporous ZSM-5 zeolite (Co-ZSM-5-M) catalyst showed high catalytic activity, selectivity, and excellent reusability in C=C double-bond cleavage of alkenes to form aromatic nitriles. All reactions proceeded smoothly to afford the desired target products in moderate to high yields under the optimal conditions. The Co-ZSM-5-M catalyst was recycled up to at least seven consecutive cycles without significant loss of its catalytic performance.

Supporting Information

 
  • References and Notes

    • 1a Kleemann A, Engel J, Kutscher B, Reichert D. Pharmaceutical Substances: Syntheses, Patents, Applications. Thieme; Stuttgart: 2001. 4th ed.
    • 1b Sundermeier M, Zapf A, Beller M, Sans S. Tetrahedron Lett. 2001; 42: 6707
    • 1c Miller JS, Manson JL. Acc. Chem. Res. 2001; 34: 563
    • 1d Smith MB, March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. Wiley; Hoboken: 2007. 6th ed.
    • 1e Fleming FF, Yao L, Ravikumar PC, Funk L, Shook BC. J. Med. Chem. 2010; 53: 7902
    • 2a The Chemistry of the Cyano Group . Rappoport Z. Wiley; London: 1970
    • 2b Larock RC. Comprehensive Organic Transformations . Wiley-VCH; New York: 1989: 819
    • 2c Ju Y, Liu F, Li C. Org. Lett. 2009; 11: 3582
    • 2d Qiao JX, Cheng X, Modi DP, Rossi KA, Luettgen JM, Knabb RM, Jadhav PK, Wexler RR. Bioorg. Med. Chem. Lett. 2005; 15: 29
    • 3a Fatiadi AJ. Preparation and Synthetic Applications of Cyano Compounds. Wiley; New York: 1983
    • 3b Larock RC. Comprehensive Organic Transformations. VCH; New York: 1989
    • 4a Chen X, Hao X.-S, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 6790
    • 4b Jia X, Yang D, Zhang S, Cheng J. Org. Lett. 2009; 11: 4716
    • 4c Yeung P, So C, Lau C, Kwong F. Angew. Chem. Int. Ed. 2010; 49: 8918
    • 4d Reddy B, Begum Z, Reddy Y, Yadav J. Tetrahedron Lett. 2010; 51: 3334
    • 4e Liskey C, Liao X, Hartwig J. J. Am. Chem. Soc. 2010; 132: 11389
    • 4f Ren Y, Liu Z, He S, Zhao S, Wang J, Niu R, Yin W. Org. Process Res. Dev. 2009; 13: 764
    • 4g Do H, Daugulis O. Org. Lett. 2010; 12: 2517
    • 4h Tajima T, Nakajima A. J. Am. Chem. Soc. 2008; 130: 10496
    • 4i Dohi T, Morimoto K, Takenaga N, Goto A, Maruyama A, Kiyono Y, Tohma H, Kita Y. J. Org. Chem. 2007; 72: 109

      Reviews:
    • 5a Colby DA, Bergman RG, Ellman JA. Chem. Rev. 2010; 110: 624
    • 5b Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 5c Yeung CS, Dong VM. Chem. Rev. 2011; 111: 1215
    • 5d Sun C.-L, Li B.-J, Shi Z.-J. Chem. Rev. 2011; 111: 1293
    • 5e Ackermann L. Chem. Rev. 2011; 111: 1315
    • 5f McMurray L, O’Hara F, Gaunt MJ. Chem. Soc. Rev. 2011; 40: 1885
    • 5g Cho SH, Kim JY, Kwak J, Chang S. Chem. Soc. Rev. 2011; 40: 5068
    • 5h Engle KM, Mei T.-S, Wasa M, Yu J.-Q. Acc. Chem. Res. 2012; 45: 788
    • 5i Shi Z.-Z, Zhang C, Tang C.-H, Jiao N. Chem. Soc. Rev. 2012; 41: 3381
    • 5j Yamaguchi J, Yamaguchi AD, Itami K. Angew. Chem. Int. Ed. 2012; 51: 8960
    • 5k Wencel-Delord J, Glorius F. Nat. Chem. 2013; 5: 369
  • 6 Xu J.-H, Jiang Q, Guo C.-C. J. Org. Chem. 2013; 78: 11881
  • 7 Denton WI, Bishop RB, Caldwell HP, Chapman HD. Ind. Eng. Chem. 1950; 42: 796
  • 8 Chow YL. J. Am. Chem. Soc. 1965; 87: 4642
  • 9 Zong X, Zheng Q.-Z, Jiao N. Org. Biomol. Chem. 2014; 12: 1198
  • 10 Chiba S, Zhang L, Ang GY, Hui BE.-Q. Org. Lett. 2010; 12: 2052
  • 11 General Procedure for the Preparation of Aromatic Nitriles – Typical Procedure for Compound 2a To the mixture of 1a (190 mg, 1.0 mmol), TMSN3 (222 mg, 2.5 mmol), NBS, K3PO4·3H2O (251 mg, 2.0 mmol) in MeCN (2.0 mL) was added Co-ZSM-5-M (50 mg) in one portion at r.t. The reaction mixture was heated to 80 °C and stirred for 2 h, until the substrate 1a was consumed as indicated by TLC. The solvent was removed under reduced pressure, and the residue was purified by flash column chromatography (eluent: PE–EtOAc, 30:1) to afford product 2a (99 mg, 86% yield). 4-Methoxybenzonitrile (2a) 1H NMR (500 MHz, CDCl3): δ = 7.59 (d, J = 9.0 Hz, 2 H), 6.96 (d, J = 9.0 Hz, 2 H), 3.86 (s, 3 H). 13C NMR (125 MHz, CDCl3): δ = 162.8, 133.9, 119.1, 114.7, 103.9, 55.5. 4-Propoxybenzonitrile (2c) 1H NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 9.0 Hz, 2 H), 6.94 (d, J = 9.0 Hz, 2 H), 3.96 (t, J = 6.5 Hz, 2 H), 1.89–1.76 (m, 2 H), 1.04 (t, J = 7.5 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 162.4, 133.9, 119.2, 115.1, 103.6, 69.8, 22.3, 10.3. 4-(Cyclopentyloxy)benzonitrile (2d) 1H NMR (500 MHz, CDCl3): δ = 7.56 (d, J = 9.0 Hz, 2 H), 6.91 (d, J = 9.0 Hz, 2 H), 4.84–4.73 (m, 1 H), 1.98–1.88 (m, 2 H), 1.88–1.74 (m, 4 H), 1.70–1.57 (m, 2 H). 13C NMR (125 MHz, CDCl3): δ = 150.5, 149.9, 146.9, 124.0, 121.6, 64.1, 55.6, 51.2, 34.5.