Synlett 2016; 27(01): 1-5
DOI: 10.1055/s-0035-1560541
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Evaluation of a Novel Hydrophilic 6,6′-Bis(1,2,4-triazin-3-yl)-2,2′-bipyridine Ligand for Separating Actinide(III) from Lanthanide(III)

Frank W. Lewis*
a   Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK   Email: frank.lewis@northumbria.ac.uk
b   Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
,
Laurence M. Harwood
b   Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
,
Michael J. Hudson
b   Department of Chemistry, University of Reading, Whiteknights, Reading RG6 6AD, UK
,
Ana Núñez
c   Centro de Investigaciones Energéticas, Medio Ambientales y Tecnológicas (CIEMAT), Avda. Complutense, 40.28040-Madrid, Spain
,
Hitos Galán
c   Centro de Investigaciones Energéticas, Medio Ambientales y Tecnológicas (CIEMAT), Avda. Complutense, 40.28040-Madrid, Spain
,
Amparo G. Espartero
c   Centro de Investigaciones Energéticas, Medio Ambientales y Tecnológicas (CIEMAT), Avda. Complutense, 40.28040-Madrid, Spain
› Author Affiliations
Further Information

Publication History

Received: 15 September 2015

Accepted after revision: 02 November 2015

Publication Date:
18 November 2015 (online)


Dedicated to Professor Steven Ley on the occasion of his 70th birthday

Abstract

We report the synthesis and evaluation of a novel hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligand containing carboxylate groups as a selective aqueous complexing agent for the minor actinides over lanthanides. The novel ligand is able to complex and separate Am(III) from Eu(III) in alkaline solutions selectively.

Supporting Information

 
  • References and Notes

  • 1 Current address: Section of Nuclear Fuel Cycle and Materials, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna International Centre, PO Box 100, 1400 Vienna, Austria.
    • 2a Musikas C, Schultz W, Liljenzin J.-O. Solvent Extraction Principles and Practice . Rydberg J, Cox M, Musikas C, Choppin G. Marcel Dekker Inc; New York: 2004. 2nd ed., 507-557
    • 2b Nash KL, Madic C, Mathur J, Lacquement J. The Chemistry of the Actinide and Transactinide Elements . Vol. 1. Katz JJ, Morss LR, Edelstein NM, Fuger J. Springer; Dordrecht: 2006: 2622
  • 3 Salvatores M, Palmiotti G. Prog. Part. Nucl. Phys. 2011; 66: 144
  • 4 Seaborg GT. Radiochim. Acta 1993; 61: 115
    • 5a Choppin GR. J. Alloys Compd. 1995; 223: 174
    • 5b Choppin GR. J. Alloys Compd. 2002; 344: 55
    • 5c Kaltsoyannis N. Inorg. Chem. 2013; 52: 3407
    • 5d Neidig ML, Clark DL, Martin RL. Coord. Chem. Rev. 2013; 257: 394
    • 6a Kolarik Z. Chem. Rev. 2008; 108: 4208
    • 6b Lewis FW, Hudson MJ, Harwood LM. Synlett 2011; 2609
    • 6c Hudson MJ, Harwood LM, Laventine DM, Lewis FW. Inorg. Chem. 2013; 52: 3414
    • 6d Panak PJ, Geist A. Chem. Rev. 2013; 113: 1199
    • 6e Hudson MJ, Lewis FW, Harwood LM. Strategies and Tactics in Organic Synthesis . Vol. 9. Harmata M. Elsevier; Amsterdam: 2013: 177
  • 7 Geist A, Hill C, Modolo G, Foreman MR. St. J, Weigl M, Gompper K, Hudson MJ, Madic C. Solvent Extr. Ion Exch. 2006; 24: 463
    • 8a Magnusson D, Christiansen B, Foreman MR. S, Geist A, Glatz J.-P, Malmbeck R, Modolo G, Serrano-Purroy D, Sorel C. Solvent Extr. Ion Exch. 2009; 27: 97
    • 8b Aneheim E, Ekberg C, Fermvik A, Foreman MR. St. J, Retegan T, Skarnemark G. Solvent Extr. Ion Exch. 2010; 28: 437
    • 8c Aneheim E, Ekberg C, Fermvik A, Foreman MR. St. J, Grűner B, Hájková Z, Kvičalová M. Solvent Extr. Ion Exch. 2011; 29: 157
    • 8d Wilden A, Schreinemachers C, Sypula M, Modolo G. Solvent Extr. Ion Exch. 2011; 29: 190
    • 8e Wilden A, Modolo G, Schreinemachers C, Sadowski F, Lange S, Sypula M, Magnusson D, Geist A, Lewis FW, Harwood LM, Hudson MJ. Solvent Extr. Ion Exch. 2013; 31: 519
    • 9a Lewis FW, Harwood LM, Hudson MJ, Drew MG. B, Desreux JF, Vidick G, Bouslimani N, Modolo G, Wilden A, Sypula M, Vu T.-H, Simonin J.-P. J. Am. Chem. Soc. 2011; 133: 13093
    • 9b Lewis FW, Harwood LM, Hudson MJ, Drew MG. B, Hubscher-Bruder V, Videva V, Arnaud-Neu F, Stamberg K, Vyas S. Inorg. Chem. 2013; 52: 4993
    • 9c Afsar A, Harwood LM, Hudson MJ, Distler P, John J. Chem. Commun. 2014; 50: 15082
    • 10a Weaver B, Kappelmann FA. J. Inorg. Nucl. Chem. 1968; 30: 263
    • 10b Nilsson M, Nash KL. Solvent Extr. Ion Exch. 2007; 25: 665
    • 10c Nilsson M, Nash KL. Solvent Extr. Ion Exch. 2009; 27: 354
    • 10d Nash KL. Solvent Extr. Ion Exch. 2015; 33: 1
  • 11 Geist A, Müllich U, Magnusson D, Kaden P, Modolo G, Wilden A, Zevaco T. Solvent Extr. Ion Exch. 2012; 30: 433
  • 12 Lewis FW, Harwood LM, Hudson MJ, Geist A, Kozhevnikov VN, Distler P, John J. Chem. Sci. 2015; 6: 4812
    • 13a Ruff CM, Müllich U, Geist A, Panak PJ. Dalton Trans. 2012; 41: 14594
    • 13b Carrott M, Geist A, Hères X, Lange S, Malmbeck R, Miguirditchian M, Modolo G, Wilden A, Taylor R. Hydrometallurgy 2015; 152: 139
    • 13c Wilden A, Modolo G, Kaufholz P, Sadowski F, Lange S, Sypula M, Magnusson D, Müllich U, Geist A, Bosbach D. Solvent Extr. Ion Exch. 2015; 33: 91
  • 14 Lewis FW, Harwood LM, Hudson MJ, Müllich U, Geist A. Chem. Commun. 2015; 51: 9189

    • See for example:
    • 15a Drew MG. B, Foreman MR. S. J, Hill C, Hudson MJ, Madic C. Inorg. Chem. Commun. 2005; 8: 239
    • 15b Foreman MR. S, Hudson MJ, Drew MG. B, Hill C, Madic C. Dalton Trans. 2006; 1645
    • 15c Trumm S, Lieser G, Foreman MR. S, Panak PJ, Geist A, Fanghänel T. Dalton Trans. 2010; 39: 923
    • 15d Harwood LM, Lewis FW, Hudson MJ, John J, Distler P. Solvent Extr. Ion Exch. 2011; 29: 551
    • 15e Lewis FW, Harwood LM, Hudson MJ, Distler P, John J, Stamberg K, Núñez A, Galán H, Espartero AG. Eur. J. Org. Chem. 2012; 1509
    • 16a Burnett CA, Lagona J, Wu A, Shaw JA, Coady D, Fettinger JC, Day AI, Isaacs L. Tetrahedron 2003; 59: 1961
    • 16b Yin G, Wang Z, Chen Y, Wu A, Pan Y. Synlett 2006; 49
    • 16c Li Y, Yin G, Guo H, Zhou B, Wu A. Synthesis 2006; 2897
    • 16d Hu S.-L, She N.-F, Yin G.-D, Guo H.-Z, Wu A.-X, Yang C.-L. Tetrahedron Lett. 2007; 48: 1591
    • 16e Gao M, Cao L, Wang Z, Sun J, She N, Wu A. Synlett 2009; 315
    • 16f Cao L, Ding J, Wang J, Chen Y, Gao M, Xue W, Wu A. Synlett 2010; 2553
    • 16g Li L, She N.-F, Fei Z, So P.-K, Wang Y.-Z, Cao L.-P, Wu A, Yao Z.-P. J. Fluoresc. 2011; 21: 1103
  • 17 Khurana JM, Kandpal BM. Tetrahedron Lett. 2003; 44: 4909
  • 18 Pabst GR, Pfüller OC, Sauer J. Tetrahedron 1999; 55: 5047
  • 19 A BTP ligand with ester groups attached to C6 of the triazine rings was reported previously, see: Gehre A, Stanforth SP, Tarbit B. Tetrahedron 2009; 65: 1115
  • 20 Synthesis of BTBP 11: The starting material 10 (0.40 g, 0.664 mmol) was dissolved in THF (90 mL) and a solution of NaOH (0.133 g, 5 equiv) in MeOH (30 mL) was added. The flask was heated under reflux for 3 h. The flask was allowed to cool to r.t. and the insoluble solid was filtered and washed successively with MeOH (40 mL), acetone (10 mL) and CH2Cl2 (10 mL). The solid was allowed to dry in air to afford the novel BTBP 11 as a yellow solid (0.35 g, 92%); mp above 300 °C (from MeOH). 1H NMR (400.1 MHz, D2O): δ = 8.22 (t, J = 7.9 Hz, 2 H, 4-H, 4′-H), 8.55 (dd, J = 7.9, 0.8 Hz, 2 H, 5-H, 5′-H), 8.57 (dd, J = 7.9, 0.8 Hz, 2 H, 3-H, 3′-H). 13C NMR (100.6 MHz, D2O): δ = 124.9 (C-3, C-3′), 125.0 (C-5, C-5′), 139.6 (C-4, C-4′), 151.3 (2 × quat), 152.8 (2 × quat), 154.6 (2 × quat), 155.7 (2 × quat), 161.7 (2 × quat), 169.4 (2 × quat), 169.8 (2 × quat). HRMS (CI, H2O; as tetracarboxylic acid): m/z [M+ H] + for C20H10N8O8: 491.0699; found: 491.0683. Anal. Calcd for C20H6N8O8Na4: C, 41.54; H, 1.05; N, 19.37. Found: C, 41.22; H, 1.37; N, 18.98.
    • 21a Sasaki Y, Sugo Y, Suzuki S, Tachimori S. Solvent Extr. Ion Exch. 2001; 19: 91
    • 21b Modolo G, Asp H, Schreinemachers C, Vijgen H. Solvent Extr. Ion Exch. 2007; 25: 703
    • 21c Modolo G, Asp H, Vijgen H, Malmbeck R, Magnusson D, Sorel C. Solvent Extr. Ion Exch. 2008; 26: 62
  • 22 Under these conditions, extraction of Am(III) and Eu(III) into the organic phase by TODGA is more thermodynamically favored than back-extraction into the aqueous phase. The sulfonated ligands 46 are also unable to strip Am(III) from the organic phase at this pH.
  • 23 Trumm S, Wipff G, Geist A, Panak PJ, Fanghänel T. Radiochim. Acta 2011; 99: 13
    • 24a Lan J.-H, Shi W.-Q, Yuan L.-Y, Zhao Y.-L, Li J, Chai Z.-F. Inorg. Chem. 2011; 50: 9230
    • 24b Lan J.-H, Shi W.-Q, Yuan L.-Y, Feng Y.-X, Zhao Y.-L, Chai Z.-F. J. Phys. Chem. A 2012; 116: 504
    • 24c Lan J.-H, Shi W.-Q, Yuan L.-Y, Li J, Zhao Y.-L, Chai Z.-F. Coord. Chem. Rev. 2012; 256: 1406