Synthesis 2016; 48(03): 313-328
DOI: 10.1055/s-0035-1560362
review
© Georg Thieme Verlag Stuttgart · New York

Self-Assembled Supramolecular Structures as Catalysts for Reactions Involving Cationic Transition States

Lorenzo Catti
Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany   Email: konrad.tiefenbacher@tum.de
,
Qi Zhang
Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany   Email: konrad.tiefenbacher@tum.de
,
Konrad Tiefenbacher*
Department Chemie, Technische Universität München, Lichtenbergstraße 4, 85747 Garching, Germany   Email: konrad.tiefenbacher@tum.de
› Author Affiliations
Further Information

Publication History

Received: 11 September 2015

Accepted after revision: 05 October 2015

Publication Date:
20 November 2015 (online)


Abstract

Self-assembled supramolecular structures represent easily accessible systems for the study of enzyme-like catalysis. The hydrophobic cavities of the assemblies provide a distinct chemical environment that can lead to unusual chemo- and stereoselectivities. This review summarizes the application of such host structures in the catalysis of reactions involving cationic transition states and includes detailed discussion of mechanisms and substrate–host interactions. The literature up to April 2015 is covered.

1 Introduction

2 Molecular Capsules: Structures and Background

3 Catalyzed Reactions

4 Summary and Outlook

 
  • References

    • 1a Hof F, Craig SL, Nuckolls C, Rebek Jr J. Angew. Chem. Int. Ed. 2002; 41: 1488
    • 1b Vriezema DM, Comellas Aragonès M, Elemans JA. A. W, Cornelissen JJ. L. M, Rowan AE, Nolte RJ. M. Chem. Rev. 2005; 105: 1445
    • 1c Evan-Salem T, Baruch I, Avram L, Cohen Y, Palmer LC, Rebek Jr J. Proc. Natl. Acad. Sci. U.S.A. 2006; 103: 12296
    • 1d Koblenz TS, Wassenaar J, Reek JN. H. Chem. Soc. Rev. 2008; 37: 247
    • 1e Pluth MD, Bergman RG, Raymond KN. Acc. Chem. Res. 2009; 42: 1650
    • 1f Yoshizawa M, Klosterman JK, Fujita M. Angew. Chem. Int. Ed. 2009; 48: 3418
    • 1g Yoshizawa M, Fujita M. Bull. Chem. Soc. Jpn. 2010; 83: 609
    • 1h Marchetti L, Levine M. ACS Catal. 2011; 1: 1090
    • 1i Wiester MJ, Ulmann PA, Mirkin CA. Angew. Chem. Int. Ed. 2011; 50: 114
    • 1j Topics in Current Chemistry. Vol. 319. Albrecht M, Hahn E. Springer; Berlin/Heidelberg: 2012
    • 1k Ronson TK, Zarra S, Black SP, Nitschke JR. Chem. Commun. 2013; 49: 2476
    • 1l Han M, Engelhard DM, Clever GH. Chem. Soc. Rev. 2014; 43: 1848
    • 1m Zhang G, Mastalerz M. Chem. Soc. Rev. 2014; 43: 1934
    • 1n Raynal M, Ballester P, Vidal-Ferran A, van Leeuwen PW. N. M. Chem. Soc. Rev. 2014; 43: 1734
    • 1o Jordan JH, Gibb BC. Chem. Soc. Rev. 2015; 44: 547
    • 1p Brown CJ, Toste FD, Bergman RG, Raymond KN. Chem. Rev. 2015; 115: 3012
    • 1q Leenders SH. A. M, Gramage-Doria R, de Bruin B, Reek JN. H. Chem. Soc. Rev. 2015; 44: 433
    • 1r Zarra S, Wood DM, Roberts DA, Nitschke JR. Chem. Soc. Rev. 2015; 44: 419
  • 2 Mackay LG, Wylie RS, Sanders JK. M. J. Am. Chem. Soc. 1994; 116: 3141
  • 3 Mattei P, Diederich F. Helv. Chim. Acta 1997; 80: 1555
  • 4 Cram DJ, Katz HE, Dicker IB. J. Am. Chem. Soc. 1984; 106: 4987
    • 5a Miller DJ, Allemann RK. Nat. Prod. Rep. 2012; 29: 60
    • 5b Dickschat JS. Nat. Prod. Rep. 2011; 28: 1917
    • 5c Christianson DW. Chem. Rev. 2006; 106: 3412
    • 6a Starks CM, Back K, Chappell J, Noel JP. Science 1997; 277: 1815
    • 6b Lesburg CA, Zhai G, Cane DE, Christianson DW. Science 1997; 277: 1820
  • 7 Caulder DL, Powers RE, Parac TN, Raymond KN. Angew. Chem. Int. Ed. 1998; 37: 1840
  • 8 Davis AV, Fiedler D, Ziegler M, Terpin A, Raymond KN. J. Am. Chem. Soc. 2007; 129: 15354
  • 9 Zhao C, Sun Q.-F, Hart-Cooper WM, DiPasquale AG, Toste FD, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2013; 135: 18802
  • 10 Biros SM, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2007; 129: 12094
  • 11 Sgarlata C, Mugridge JS, Pluth MD, Tiedemann BE. F, Zito V, Arena G, Raymond KN. J. Am. Chem. Soc. 2010; 132: 1005
  • 12 Mahadevi AS, Sastry GN. Chem. Rev. 2013; 113: 2100
    • 13a Davis AV, Raymond KN. J. Am. Chem. Soc. 2005; 127: 7912
    • 13b Davis AV, Fiedler D, Seeber G, Zahl A, van Eldik R, Raymond KN. J. Am. Chem. Soc. 2006; 128: 1324
    • 14a Zhang Q, Tiefenbacher K. J. Am. Chem. Soc. 2013; 135: 16213
    • 14b Catti L, Tiefenbacher K. Chem. Commun. 2015; 51: 892
    • 14c Zhang Q, Tiefenbacher K. Nat. Chem. 2015; 7: 197
    • 14d Bianchini G, Sorella GL, Canever N, Scarso A, Strukul G. Chem. Commun. 2013; 49: 5322
    • 14e Cavarzan A, Scarso A, Sgarbossa P, Strukul G, Reek JN. H. J. Am. Chem. Soc. 2011; 133: 2848
    • 14f Cavarzan A, Reek JN. H, Trentin F, Scarso A, Strukul G. Catal. Sci. Technol. 2013; 3: 2898
    • 15a MacGillivray LR, Atwood JL. Nature 1997; 389: 469
    • 15b Shivanyuk A, Rebek J. Proc. Natl. Acad. Sci. U.S.A. 2001; 98: 7662
    • 15c Avram L, Cohen Y. J. Am. Chem. Soc. 2002; 124: 15148
    • 15d Shivanyuk A, Rebek JJ. Chem. Commun. 2001; 2424
  • 16 Avram L, Cohen Y. J. Am. Chem. Soc. 2004; 126: 11556
  • 17 Slovak S, Cohen Y. Supramol. Chem. 2010; 22: 803
  • 18 Mecozzi S, Rebek JJ. Chem. Eur. J. 1998; 4: 1016
  • 19 Slovak S, Cohen Y. Chem. Eur. J. 2012; 18: 8515
  • 20 Yamanaka M, Shivanyuk A, Rebek J. J. Am. Chem. Soc. 2004; 126: 2939
  • 21 Cohen Y, Avram L, Frish L. Angew. Chem. Int. Ed. 2005; 44: 520
    • 22a Atwood JL, Barbour LJ, Jerga A. Chem. Commun. 2001; 2376
    • 22b Avram L, Cohen Y. Org. Lett. 2003; 5: 3329
    • 23a Fiedler D, Bergman RG, Raymond KN. Angew. Chem. Int. Ed. 2004; 43: 6748
    • 23b Fiedler D, van Halbeek H, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2006; 128: 10240
  • 24 Brown CJ, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2009; 131: 17530
  • 25 Hastings CJ, Fiedler D, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2008; 130: 10977
  • 26 Pluth MD, Bergman RG, Raymond KN. Science 2007; 316: 85
  • 27 Pluth MD, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2008; 130: 11423
    • 28a Pluth MD, Bergman RG, Raymond KN. Angew. Chem. Int. Ed. 2007; 46: 8587
    • 28b Pluth MD, Bergman RG, Raymond KN. J. Org. Chem. 2009; 74: 58
    • 29a Markó IE, Ates A, Gautier A, Leroy B, Plancher J.-M, Quesnel Y, Vanherck J.-C. Angew. Chem. Int. Ed. 1999; 38: 3207
    • 29b Krishnaveni NS, Surendra K, Reddy MA, Nageswar YV. D, Rao KR. J. Org. Chem. 2003; 68: 2018
  • 30 Hastings CJ, Pluth MD, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2010; 132: 6938
  • 31 Hastings CJ, Backlund MP, Bergman RG, Raymond KN. Angew. Chem. Int. Ed. 2011; 50: 10570
  • 32 Hastings CJ, Bergman RG, Raymond KN. Chem. Eur. J. 2014; 20: 3966
  • 33 Wang ZJ, Brown CJ, Bergman RG, Raymond KN, Toste FD. J. Am. Chem. Soc. 2011; 133: 7358
  • 34 Wang ZJ, Clary KN, Bergman RG, Raymond KN, Toste FD. Nat. Chem. 2013; 5: 100
  • 35 Hart-Cooper WM, Clary KN, Toste FD, Bergman RG, Raymond KN. J. Am. Chem. Soc. 2012; 134: 17873
  • 36 Hart-Cooper WM, Zhao C, Triano RM, Yaghoubi P, Ozores HL, Burford KN, Toste FD, Bergman RG, Raymond KN. Chem. Sci. 2015; 6: 1383
  • 37 Zhao C, Toste FD, Raymond KN, Bergman RG. J. Am. Chem. Soc. 2014; 136: 14409
  • 38 Adriaenssens L, Escribano-Cuesta A, Homs A, Echavarren AM, Ballester P. Eur. J. Org. Chem. 2013; 1494
  • 39 Pronin SV, Shenvi RA. Nat. Chem. 2012; 4: 915
  • 40 Croteau R. Chem. Rev. 1987; 87: 929