Synlett, Inhaltsverzeichnis Synlett 2016; 27(01): 75-79DOI: 10.1055/s-0035-1560211 letter © Georg Thieme Verlag Stuttgart · New YorkRegioselective Suzuki–Miyaura Cross-Coupling Reactions of the Bis(triflate) of 1,4-Dihydroxy-9H-fluoren-9-one Authors Institutsangaben Marcel Sonneck a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany eMail: peter.langer@uni-rostock.de b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany David Kuhrt a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany eMail: peter.langer@uni-rostock.de b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany Krisztina Kónya c Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary Tamás Patonay c Department of Organic Chemistry, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary Alexander Villinger a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany eMail: peter.langer@uni-rostock.de Peter Langer* a Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany eMail: peter.langer@uni-rostock.de b Leibniz-Institut für Katalyse an der Universität Rostock e.V., Albert-Einstein-Str. 29a, 18059 Rostock, Germany Artikel empfehlen Abstract Artikel einzeln kaufen(opens in new window) Alle Artikel dieser Rubrik(opens in new window) Dedicated to Professor Steven V. Ley on the occasion of his 70th birthday Abstract 1,4-Diaryl-9H-fluoren-9-ones were prepared by regioselective Suzuki–Miyaura cross-coupling reaction of the bis(triflate) of 1,4-dihydroxy-9H-fluoren-9-one. The reactions proceeded with excellent site selectivity. The first attack occurs at position 1, due to electronic reasons. Key words Key wordsCatalysis - Suzuki–Miyaura reaction - regioselectivity - palladium - heterocycles Volltext Referenzen References and Notes 1 Campo MA, Larock RC. J. Org. Chem. 2002; 67: 5616 ; and references cited therein 2 Perry PJ, Read MA, Davies RT, Gowan SM, Reszka AP, Wood AA, Kelland LR, Neidle S. J. Med. Chem. 1999; 42: 2679 3a Gould SJ, Melville CR, Cone MC, Chen J, Carney JR. J. Org. Chem. 1997; 62: 320 3b Mal D, Hazra NK. Tetrahedron Lett. 1996; 37: 2641 ; and references cited therein 3c Cragoe EJ, Marangos PJ, Weimann TR. US 6251898 BI, 2001 4a Galasso V, Pichierri FJ. Phys. Chem. A 2009; 113: 2534 4b Saikawa Y, Hashimoto K, Nakata M, Yoshihira M, Nagai K, Ida M, Komiya T. Nature (London, U.K.) 2004; 429: 363 4c Hashimoto K, Saikawa Y, Nakata M. Pure Appl. Chem. 2007; 79: 507 4d Saikawa Y, Moriya K, Hashimoto K, Nakata M. Tetrahedron Lett. 2006; 47: 2535 5a Fuchibe K, Akiyama TJ. J. Am. Chem. Soc. 2006; 128: 1434 5b Morgan LR, Thangaraj K, LeBlanc B, Rodgers A, Wolford LT, Hooper CL, Fan D, Jursic BS. J. Med. Chem. 2003; 46: 4552 5c Pan H.-L, Fletcher TL. J. Med. Chem. 1965; 8: 491 5d Miller EC. Cancer Res. 1978; 38: 1479 5e Robillard B, Lhomme MF, Lhomme J. Tetrahedron Lett. 1985; 26: 2659 5f Fletcher TL, Namkung MJ, Pan HL. J. Med. Chem. 1967; 10: 936 5g Doisy R, Tang MS. Biochemistry 1995; 34: 4358 6a Petry PJ, Read MA, Davies RT, Gowan SM, Reszka AP, Wood AA, Kelland LR, Neidle S. J. Med. Chem. 1999; 42: 2679 6b Han Y, Bisello A, Nakamoto C, Rosenblatt M, Chorev M. J. Pept. Res. 2000; 55: 230 6c Greenlee ML, Laub JB, Rouen GP, Dininno F, Hammond ML, Huber JL, Sundelof JG, Hammond GG. Bioorg. Med. Chem. Lett. 1999; 9: 322 6d Tierney MT, Grinstaff MW. J. Org. Chem. 2000; 65: 5355 7a Gould SJ, Melville CR, Cone MC, Chen J, Carney JR. J. Org. Chem. 1997; 62: 320 7b Koyama H, Kamikawa T. Tetrahedron Lett. 1997; 38: 3973 8 Burke SM, Joullie MM. Synth. Commun. 1976; 6: 371 9a Andrews ER, Fleming RW, Grisar JM, Khim JC, Wentstrup DL, Mayer DJ. J. Med. Chem. 1974; 17: 882 9b Burke HM, Joullie MM. J. Med. Chem. 1978; 21: 1084 10 Goel A, Chaurasia S, Dixit M, Kumar V, Parakash S, Jena B, Verma JK, Jain M, Anand RS, Manoharan S. Org. Lett. 2009; 11: 1289 ; and references cited therein 11 Reim S, Lau M, Adeel M, Hussain I, Yawer MA, Riahi A, Ahmed Z, Fischer C, Reinke H, Langer P. Synthesis 2009; 445 For reviews of cross-coupling reactions of polyhalogenated heterocycles, see: 12a Schröter S, Stock C, Bach T. Tetrahedron 2005; 61: 2245 12b Schnürch M, Flasik R, Khan AF, Spina M, Mihovilovic MD, Stanetty P. Eur. J. Org. Chem. 2006; 3283 For Suzuki–Miyaura reactions of bis(triflates) from our laboratory, see, for example: 13a Methyl 2,5-dihydroxybenzoate: Nawaz M, Ibad MF, Abid O.-U.-R, Khera RA, Villinger A, Langer P. Synlett 2010; 150 13b Alizarin: Mahal A, Villinger A, Langer P. Synlett 2010; 1085 3,4 13c Dihydroxybenzophenone: Nawaz M, Khera RA, Malik I, Ibad MF, Abid O.-UR, Villinger A, Langer P. Synlett 2010; 979 13d Phenyl 1,4-dihydroxynaphthoate: Abid O.-U.-R, Ibad MF, Nawaz M, Ali A, Sher M, Rama NH, Villinger A, Langer P. Tetrahedron Lett. 2010; 51: 1541 13e 5,10-Dihydroxy-11H-benzo[b]fluoren-11-one: Ali A, Hussain MA, Villinger A, Langer P. Synlett 2010; 3031 14 Synthesis of 9-Oxo-9H-fluorene-1,4-diaryl-bis(trifluoromethanesulfonate) (2) To a CH2Cl2 solution (150 mL) of 1 (1.8 g, 8.543 mmol) was added dry pyridine (10 mL), and the solution was cooled to –78 °C under argon atmosphere. Then Tf2O (5.785 g, 20.503 mmol, 2.4 equiv) was added dropwise to the solution and stirred for 20 h at r.t. After removal of the solvent with reduced pressure H2O (100 mL) was added to the resulting oil, and the precipitate was filtered off and recrystallized with hot heptane. After cooling to r.t., the precipitated pure product 2 was filtered and washed with heptane. To obtain the residual product, the heptane was concentrated under vacuum, and the product 2 was isolated by column chromatography (silica gel; heptane–EtOAc, 3:1) as a yellow fluffy solid (3.318 g, 82%); mp 131–133 °C. 1H NMR (300 MHz, CDCl3): δ = 7.88 (d, 3 J = 7.6 Hz, 1 H, ArH), 7.78 (d, 3 J = 7.4 Hz, 1 H, ArH), 7.64 (dt, 3 J = 7.6 Hz, 4 J = 1.2 Hz, 1 H, ArH), 7.53 (d, 3 J = 9.1 Hz, 1 H, ArH), 7.48 (dt, 3 J = 7.5 Hz, 4 J = 0.9 Hz, 1 H, ArH), 7.21 (d, 3 J = 9.1 Hz, 1 H, ArH). 13C NMR (75 MHz, CDCl3): δ = 187.40 (CO), 144.29, 143.06, 139.32, 138.13 (C), 136.09 (CH), 133.49 (C), 131.48 (CH), 129.39 (C), 127.62 (CH), 125.70, 124.5, 124.38 (C), 118.85 (q, J F,C = 321.00 Hz, CF3), 118.66 (q, J F,C = 321.00 Hz, CF3). 19F NMR (282 MHz, CDCl3): δ = –73.02 (CF3), –73.17 (CF3). IR (ATR): ν = 3104.6 (w), 3089 (w), 2921 (w), 2849 (w), 1726 (s), 1427 (s), 1224 (s), 1207 (s), 1166 (m), 1134 (s), 1104 (m), 905 (s), 886 (s), 845 (s), 812 (m), 803 (s), 762 (m), 754 (s), 598 (s) cm–1. MS (EI, 70eV): m/z = 476 (52) [M+], 343 (13), 279 (100), 251 (49), 223 (35), 185 (14), 154 (16), 128 (33), 100 (12), 69 (43). HRMS (EI): m/z calcd for C15H6F6O7S2 [M+]: 475.94536; found: 475.94491. Anal. Calcd for C15H6F6O7S2 (476.32): C, 37.82; H, 1.27. Found: C, 37.92; H, 1.08. 15 General Procedure for the Synthesis of 4a–h In a pressure tube 2 (0,315 mmol), K3PO4 (3.0 equiv), Pd(PPh3)4 (6.0 mol%), and arylboronic acid (2.4 equiv) were mixed with dry 1,4-dioxane, degassed with argon und stirred for 12 h at 100 °C. After cooling to r.t. the solution was filtered through Celite, washed with CH2Cl2, and the filtrate was concentrated by reduced pressure. The residue was purified by column chromatography to receive the bis-substituted fluorenone 4a–h in good yields. 16 1,4-Bis-(3,4-dimethoxyphenyl)-9H-fluoren-9-one (4a) Starting with 2 (150 mg, 0.315 mmol), 3a (138 mg, 0.756 mmol, 2.4 equiv), Pd(PPh3)4 (22 mg, 0.018 mmol, 6 mol%), K3PO4 (200 mg, 0.945 mmol, 3.0 equiv), and 1,4-dioxane (5 mL). After purification by column chromatography (silica gel; heptane–EtOAc, 1:1) 4a was isolated as an orange solid (138 mg, 97%); mp 192–194 °C. 1H NMR (300 MHz, CDCl3): δ = 7.62–7.58 (m, 1 H, ArH), 7.34 (d, J = 7.9 Hz, 1 H, ArH), 7.23 (d, J = 7.9 Hz, 1 H, ArH), 7.21–7.17 (m, 2 H, ArH), 7.15–7.11 (m, 2 H, ArH), 7.02 (s, 2 H, ArH), 6.97 (d, J = 9.2 Hz, 2 H, ArH), 6.81–6.75 (m, 1 H, ArH), 4.00 (s, 3 H, OCH3), 3.95 (s, 3 H, OCH3), 3.94 (s, 3 H, OCH3), 3.89 (s, 3 H, OCH3). 13C NMR (75 MHz, CDCl3): δ = 193.09 (CO), 149.35, 149.18, 149.11, 148.43, 143.72, 142.41, 141.17, 136.87 (C), 136.41 (CH), 134.80 (C), 134.20 (CH), 132.29 (C), 131.35 (CH), 130.18 (C), 128.85, 124.03, 123.30, 121.88, 121.20, 113.09, 112.26, 111.57, 110.82 (CH), 56.15, 5615 (OCH3), 56.06, 56.06 (OCH3). IR (ATR): ν = 3008 (w), 2955 (w), 2933 (w), 2905 (w), 2838 (w), 2627 (w), 2577 (w), 1701 (m), 1519 (m), 1441 (s), 1251 (s), 1222 (s), 1146 (s), 1020 (s), 746 (s) cm–1. MS (EI, 70 eV): m/z = 452 (100) [M+], 437 (9), 263 (4); 250 (4), 226 (5), 132 (4). HRMS (ESI-TOF/MS): m/z calcd for C29H24O5 [M + H]+: 453.16965; found: 453.16995; m/z calcd for C29H24O5 [M + Na]+: 475.15159; found: 475.15191. 17 General Procedure for the Synthesis of 5a–h In a pressure tube 2 (0.525 mmol), K3PO4 (2.0 equiv), Pd(PPh3)4 (3.0 mol%), and arylboronic acid (1.2 equiv) were mixed with dry 1,4-dioxane, degassed with argon und stirred for 12 h at 60 °C. After cooling to r.t., the solution was filtered through Celite, washed with CH2Cl2, and the filtrate was concentrated by reduced pressure. The residue was purified by column chromatography to receive the monosubstituted fluorenone 5a–h in good yields. 18 1-(4′-Hydroxyphenyl)-9-oxo-9H-fluoren-4-yl-trifluoromethanesulfonate (5f) Starting with 2 (150 mg, 0.315 mmol), 3f (53 mg, 0.378 mmol, 1.2 equiv), Pd(PPh3)4 (11 mg, 0.009 mmol, 3 mol%), K3PO4 (134 mg,0.63 mmol, 2.0 equiv), and 1,4-dioxane (9 mL). After purification by column chromatography (silica gel; heptane–EtOAc, 6:1) 5f was isolated as deep yellow solid (112 mg, 86%); mp 194–196 °C. 1H NMR (300 MHz, DMSO): δ = 9.75 (s, 1 H, OH), 7.80–7.69 (m, 2 H, ArH), 7.64 (t, J = 7.2 Hz, 2 H, ArH), 7.51 (t, J = 7.2 Hz, 1 H, ArH), 7.40 (m, 3 H, ArH), 6.83 (d, J = 8.6 Hz, 2 H, ArH). 13C NMR (63 MHz, CDCl3): δ = 190.03 (CO), 158.21, 142.34, 141.91, 138.63, 135.74 (C), 135.49, 134.00 (CH), 133.54, 133.58 (C), 130.81, 130.81, 130.68, 127.34 (CH), 126.01 (C), 124.47, 123.03 (CH), 118.06 (q, J F,C = 320.70 Hz, CF3), 114.73, 114.73 (CH). 19F NMR (282 MHz, CDCl3): δ = –73.13 (CF3). IR (ATR): ν = 3320 (w), 3019 (w), 2920 (w), 2850 (w), 1699 (m), 1422 (s), 1205 (s), 1137 (s), 825 (s), 608 (s), 585 (s), 567 (s), 547 (m), 527 (s) cm–1. MS (EI, 70eV): m/z = 420 (28) [M+], 287 (100), 259 (22), 231 (7), 202 (22), 176 (4), 150 (2), 101 (5), 69 (8). HRMS (EI): m/z calcd for C20H11F3O5S1 [M+]: 420.02738; found: 420.02764. Anal. Calcd for C20H11F3O5S (420.36): C, 57.15; H, 2.64. Found: C, 57.23; H, 2.52. 19 CCDC-1416855 contains all crystallographic details of this publication and is available free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or can be ordered from the following address: Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB21EZ, UK; fax: +44(1223)336033; or deposit@ccdc.cam.ac.uk. 20 General Procedure for the Synthesis of 6a–g In a pressure tube 5a–e,g, K3PO4 (2.0 equiv), Pd(PPh3)4 (5.0 mol%), and arylboronic acid (1.2 equiv) were mixed with dry 1,4-dioxane, degassed with argon and stirred for 12 h at 100 °C. After cooling to r.t. the solution was filtered through Celite, washed with CH2Cl2, and the filtrate was concentrated by reduced pressure. The residue was purified by column chromatography to receive the cross-substituted fluorenone 6a–g in good yields. 21 1-(5′-Fluoro-2′-methoxyphenyl)-4-(4′′-methoxyphenyl)-9H-fluoren-9-one (6a) Starting with 5g (75 mg, 0.166 mmol), 3b (30 mg, 0.199 mmol, 1.2 equiv), Pd(PPh3)4 (9 mg, 0.008 mmol, 5 mol%), K3PO4 (67 mg, 0.315 mmol, 2.0 equiv), and 1,4-dioxane (3 mL). After purification by column chromatography (silica gel; heptane–EtOAc, 4:1) 6a was isolated as a deep yellow solid (67 mg, 99%); mp 193–195 °C. 1H NMR (300 MHz, CDCl3): δ = 7.58–7.52 (m, 1 H, ArH), 7.45–7.39 (m, 2 H, ArH), 7.34 (d, J = 7.9 Hz, 1 H, ArH), 7.20–7.14 (m, 3 H, ArH), 7.13–7.03 (m, 3 H, ArH), 7.01 (dd, J = 8.7, 3.1 Hz, 1 H, ArH), 6.93 (dd, J = 9.0, 4.4 Hz, 1 H, ArH), 6.84–6.78 (m, 1 H, ArH), 3.92 (OCH3), 3.74 (OCH3). 13C NMR (75 MHz, CDCl3): δ = 192.72 (CO), 159.71 (OCH3), 156.92 (d, 2 J F,C = 238.5 Hz, CF), 153.52 (d, 4 J = 2.0 Hz, COCH3), 144.11, 137.45 (C), 136.57 (CH), 135.42 (d, 4 J F,C = 3.1 Hz, CH), 134.72 (C), 134.16 (CH), 131.95, 131.61 (C), 131.25, 130.22, 130.22 (CH), 128.68 (d, J = 6.6 Hz, CH), 123.94, 123.24 (CH), 117.23 (d, 2 J F,C = 23.7 Hz, CH), 115.33 (d, 2 J F,C = 22.6 Hz, CH), 114,29 (CH), 111.67 (d, 3 J F,C = 8.2 Hz, CH), 56.33 (OCH3), 55.52 (OCH3). 19F NMR (282 MHz, CDCl3): δ = –124.53 (CF). IR (ATR): ν = 3392 (w), 3068 (w), 3000 (w), 2957 (w), 2945 (w), 2914 (w), 2835 (w), 1704 (s), 1483 (s), 1469 (s), 1175 (s), 1026 (s), 940 (s), 764 (s) cm–1. MS (EI, 70eV): m/z = 410 (35) [M+], 379 (100), 294 (6), 190 (8), 153 (5). HRMS (EI): m/z calcd for C27H19F1O3 [M+]: 410.13127; found: 410.13077. 22 Handy ST, Zhang Y. Chem. Commun. 2006; 299