Synlett 2015; 26(04): 494-500
DOI: 10.1055/s-0034-1379882
letter
© Georg Thieme Verlag Stuttgart · New York

Insight into the Copper-Catalyzed Borylation of Strained Alkenes

Alejandro Parra
a   Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Email: mariola.tortosa@uam.es
,
Aurora López
a   Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Email: mariola.tortosa@uam.es
,
Sergio Díaz-Tendero
b   Departamento de Química (módulo 13), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
,
Laura Amenós
a   Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Email: mariola.tortosa@uam.es
,
José Luis García Ruano
a   Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Email: mariola.tortosa@uam.es
,
Mariola Tortosa*
a   Departamento de Química Orgánica (módulo 01), Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain   Email: mariola.tortosa@uam.es
› Author Affiliations
Further Information

Publication History

Received: 02 November 2014

Accepted: 26 November 2014

Publication Date:
09 January 2015 (online)


Abstract

The copper-catalyzed hydro- and carboboration of strained alkenes is presented. The reaction is highly diastereoselective and affords boronic ester derivatives many of which are difficult to synthesize by known methods. Competition experiments with different alkenes show that high levels of chemoselectivity can be achieved. Density functional theory calculations are in agreement with the observed chemoselectivity.

Supporting Information

 
  • References and Notes

  • 1 Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine. Hall D. Wiley-VCH; Weinheim: 2005

    • For seminal publications, see:
    • 2a Takahashi K, Isiyama T, Miyaura N. Chem. Lett. 2000; 982
    • 2b Takahashi K, Isiyama T, Miyaura N. J. Organomet. Chem. 2001; 625: 47
    • 2c Ito H, Yamanaka H, Tateiwa J, Hosomi A. Tetrahedron Lett. 2000; 41: 682

    • For recent reviews, see:
    • 2d Dang L, Lin ZY, Marder TB. Chem. Commun. 2009; 3987
    • 2e Bonet A, Solé C, Gulyás H, Fernández E. Curr. Org. Chem. 2010; 14: 5231
    • 2f Cid J, Gulyás H, Carbó JJ, Fernández E. Chem. Soc. Rev. 2012; 41: 3558
    • 3a Lee Y, Hoveyda AH. J. Am. Chem. Soc. 2009; 131: 3160
    • 3b Corberán R, Mszar NW, Hoveyda AH. Angew. Chem. Int. Ed. 2011; 50: 7079
    • 3c Noh D, Chea H, Ju J, Yun J. Angew. Chem. Int. Ed. 2009; 48: 6062
    • 3d Noh D, Yoon SK, Won J, Lee LY, Yun J. Chem. Asian J. 2011; 6: 1967
    • 4a Dang L, Zhao H, Lin Z, Marder TB. Organometallics 2007; 26: 2824
    • 4b Dang L, Lin Z, Marder TB. Organometallics 2008; 27: 4443
  • 5 Ondrusek BA, Opalka SM, Hietsoi O, Shatruk M, McQuade DT. Synlett 2013; 24: 1211

    • For copper-catalyzed additions of nucleophiles to oxa- and azabicyclic alkenes which give ring-opened products, see:
    • 6a Bertozzi F, Pineschi M, Macchia F, Arnold LA, Minnaard AJ, Feringa BL. Org. Lett. 2002; 4: 3465
    • 6b Gómez Arrayás R, Cabrera S, Carretero JC. Org. Lett. 2003; 5: 1333
    • 6c Gómez Arrayás R, Cabrera S, Carretero JC. Org. Lett. 2005; 7: 219
  • 7 Recently, ring-opened products were neither observed in the copper-catalyzed hydroamination of oxa- and aza-benzonorbornadienes: Miki Y, Hirano K, Satoh T, Miura M. Org. Lett. 2014; 16: 1498
  • 8 Sarotti AM, Pisano PL, Pellegrinet SC. Org. Biomol. Chem. 2010; 8: 5059

    • For intramolecular capture of alkylcopper species with carbon electrophiles in borylative processes, see:
    • 9a Ito H, Kosaka Y, Nonoyama K, Sasaki Y, Sawamura M. Angew. Chem. Int. Ed. 2008; 47: 7424
    • 9b Zhong C, Kunii S, Kosaka Y, Sawamura M, Ito H. J. Am. Chem. Soc. 2010; 132: 11440
    • 9c Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2013; 135: 2635
    • 9d Meng F, Jang H, Jung B, Hoveyda AH. Angew. Chem. Int. Ed. 2013; 52: 5046
    • 9e Kubota K, Yamamoto E, Ito H. J. Am. Chem. Soc. 2013; 135: 2635
    • 9f Yoshida H, Kageyuki I, Takaki K. Org. Lett. 2013; 15: 952
    • 9g Kageyuki I, Yoshida H, Takaki K. Synthesis 2014; 46: 1924
    • 9h Semba K, Nakao Y. J. Am. Chem. Soc. 2014; 136: 7567
    • 9i Semba K, Bessho N, Fujihara T, Terao J, Tsuji Y. Angew. Chem. Int. Ed. 2014; 53: 9007
    • 9j Meng F, Haeffner F, Hoveyda AH. J. Am. Chem. Soc. 2014; 136: 11304
    • 9k Meng F, McGrath KP, Hoveyda AH. Nature (London, U.K.) 2014; 513: 367
    • 10a Zhang L, Cheng J, Carry B, Hou Z. J. Am. Chem. Soc. 2012; 134: 14314
    • 10b Alfaro R, Parra A, Alemán J, García Ruano JL, Tortosa M. J. Am. Chem. Soc. 2012; 134: 15165
    • 10c Liu P, Fukui Y, Tian P, He Z.-T, Sun C.-Y, Wu N.-Y, Lin G.-Q. J. Am. Chem. Soc. 2013; 135: 11700
  • 11 We selected compounds 1a, 1c, 1d, and 1e to study the influence of the ring strain and the bridgehead atom in the copper–boryl complex insertion. We did not include azabenzonorbornadiene 1b in the competition study because additional steric effects from the tosyl group, not present in the other bicycles, could also affect the reactivity.
  • 12 Complexation followed by insertion has been previously proposed for similar reactions. See ref. 4a and: Jang H, Zhugralin AR, Lee Y, Hoveyda AM. J. Am. Chem. Soc. 2011; 133: 7859