Synlett 2014; 25(11): 1611-1615
DOI: 10.1055/s-0033-1341270
letter
© Georg Thieme Verlag Stuttgart · New York

Base-Mediated Synthesis of Imines and Amines from N-Phenylureas and Alcohols

Dilip Kumar T. Yadav
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400 019, India   Fax: +91(22)33611020   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
,
Bhalchandra M. Bhanage*
Department of Chemistry, Institute of Chemical Technology, N. Parekh Marg, Matunga, Mumbai 400 019, India   Fax: +91(22)33611020   Email: bm.bhanage@gmail.com   Email: bm.bhanage@ictmumbai.edu.in
› Author Affiliations
Further Information

Publication History

Received: 14 March 2014

Accepted after revision: 27 March 2014

Publication Date:
30 April 2014 (online)


Abstract

A new base-mediated protocol has been developed for the synthesis of imines and amines from N-phenylureas and alcohols under normal air. From the synthetic point of view, the protocol can be considered as an efficient alternative to conventional methods for the synthesis of imines and amines in moderate to excellent yields.

Supporting Information

 
  • References and Notes

    • 1a Murahashi SI, Imada Y In Transition Metals for Synthesis: Building Blocks and Fine Chemicals . Beller M, Bolm C. Wiley–VCH; Weinheim: 2004. 2nd ed.; Vol. 2, 497
    • 1b Adams JP. J. Chem. Soc., Perkin Trans. 1 2000; 125
    • 1c Wittcoff HA, Reuben BG, Plotkin JS. Industrial Organic Chemicals . Wiley; Hoboken: 2004. 2nd ed.
    • 2a Layer RW. Chem. Rev. 1963; 63: 489
    • 2b Thalji RK, Ahrendt KA, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2001; 123: 9692
    • 2c Wang Y.-H, Ye J.-L, Wang A.-E, Huang P.-Q. Org. Biomol. Chem. 2012; 10: 6504
    • 2d Yamada K, Tomioka K. Chem. Rev. 2008; 108: 2874
    • 3a Schiff H. Justus Liebigs Ann. Chem. 1864; 131: 118
    • 3b Taguchi K, Westheimer FH. J. Org. Chem. 1971; 36: 1570
    • 4a Largeron M, Chiaroni A, Fleury M.-B. Chem. Eur. J. 2008; 14: 996
    • 4b Huang H, Huang J, Liu Y.-M, He H.-Y, Cao Y, Fan K.-N. Green Chem. 2012; 14: 930
    • 5a Jiang G, Chen J, Huang J.-S, Che C.-M. Org. Lett. 2009; 11: 4568
    • 5b Nicolaou KC, Mathison CJ. N, Montagnon T. Angew. Chem. Int. Ed. 2003; 42: 4077
    • 5c Yuan H, Yoo W.-J, Miyamura H, Kobayashi S. J. Am. Chem. Soc. 2012; 134: 13970
  • 6 Samec JS. M, Éll AH, Bäckvall J.-E. Chem. Eur. J. 2005; 11: 2327
  • 7 Zanardi A, Mata JA, Peris E. Chem. Eur. J. 2010; 16: 10502
  • 8 Smith MB, March J. Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. Wiley; Hoboken: 2001. 5th ed.; 499
  • 9 Alonso F, Riente P, Yus M. Acc. Chem. Res. 2011; 44: 379
    • 10a Saidi O, Blacker AJ, Farah MM, Marsden SP, Williams JM. J. Chem. Commun. 2010; 46: 1541
    • 10b Yadav DK. T, Bhanage BM. Eur. J. Org. Chem. 2013; 5106
    • 11a Guillena G, Ramón DJ, Yus M. Chem. Rev. 2010; 110: 1611
    • 11b Michlik S, Hille T, Kempe R. Adv. Synth. Catal. 2012; 354: 847
    • 12a Cano R, Ramón DJ, Yus M. J. Org. Chem. 2011; 76: 5547
    • 12b Gnanaprakasam B, Zhang J, Milstein D. Angew. Chem. Int. Ed. 2010; 49: 1468
  • 13 Esteruelas MA, Honczek N, Oliván M, Oñate E, Valencia M. Organometallics 2011; 30: 2468
    • 14a Sun H, Su FZ, Ni J, Cao Y, He HY, Fan KN. Angew. Chem. Int. Ed. 2009; 48: 4390
    • 14b Kegnæs S, Mielby J, Mentzel UV, Christensen CH, Riisager A. Green Chem. 2010; 12: 1437
    • 15a Jiang L, Jin L, Tian H, Yuan X, Yu X, Xu Q. Chem. Commun. 2011; 47: 10833
    • 15b Kwon MS, Kim S, Park S, Bosco W, Chidrala RK, Park J. J. Org. Chem. 2009; 74: 2877
  • 16 Shiraishi Y, Ikeda M, Tsukamoto D, Tanaka S, Hiraia T. Chem. Commun. 2011; 47: 4811
  • 17 Kang Q, Zhang Y. Green Chem. 2012; 14: 1016
  • 18 Zhang E, Tian H, Xu S, Yu X, Xu Q. Org. Lett. 2013; 15: 2704
    • 19a Xu J, Zuang R, Bao L, Tang G, Zhao Y. Green Chem. 2012; 14: 2384
    • 19b Donthiri RR, Patil RD, Adimurthy S. Eur. J. Org. Chem. 2012; 4457
    • 20a Hosseinzadeh R, Sarrafi Y, Mohadjerani M. Tetrahedron Lett. 2008; 49: 840
    • 20b Barbero N, Carril M, SanMartin R, Domínguez E. Tetrahedron 2008; 64: 7283
    • 20c Gavade S, Balaskar R, Mane M, Pabrekar PN, Mane D. Synth. Commun. 2012; 42: 1704
  • 21 Imines 3as; General Procedure A mixture of the appropriate N-arylurea (1 mmol), arylmethanol (3 mmol), and KOH (1.5 mmol) was stirred at 135 °C under a normal air atmosphere in a sealed 20-mL Schlenk tube for 24 h. When the reaction was complete (GC), EtOAc (3 mL) and H2O (3 mL) were added and the mixture was stirred vigorously. The organic layer was separated, and the aqueous layer was extracted with EtOAc (2 × 3 mL). The organic layers were combined, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography (basic alumina saturated with Et3N, PE). The identity of the compound was confirmed by various spectroscopic techniques, and its purity was determined by GC-MS analysis. N-Benzylideneaniline (3a) 18 Brown oil; yield: 172 mg (95%). 1H NMR (400 MHz, CDCl3): δ = 8.45 (s, 1 H), 7.91–7.88 (m, 2 H), 7.47–7.37 (m, 5 H), 7.24–7.20 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 160.4, 152.1, 136.2, 131.4, 129.1, 128.8, 128.7, 125.9, 120.9. GC-MS (EI, 70 eV): m/z (%) = 181 (90) [M]+, 180 (100), 152 (5), 104 (10), 77 (60), 51 (15), 39 (5). N-(4-Methoxybenzylidene)aniline (3c) 28 White solid; yield: 198 mg (94%); mp 63–67 °C. 1H NMR (400 MHz, CDCl3): δ = 8.37 (s, 1 H), 7.84 (d, J = 8.8 Hz, 2 H), 7.37 (t, J = 7.5 Hz, 2 H), 7.20–7.12 (m, 3 H), 6.97 (d, J = 8.8 Hz, 2 H), 3.85 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 162.2, 159.7, 152.4, 130.5, 129.1, 125.5, 120.9, 114.2, 55.4. GC–MS (EI, 70 eV): m/z (%) = 211 (20) [M]+, 210 (100), 195 (6), 167 (10), 77 (42), 51 (15). N-(2-Chlorobenzylidene)aniline (3f) 18 Brown oil; yield: 148 mg (69%). 1H NMR (400 MHz, CDCl3): δ = 8.91 (s, 1 H), 8.25–8.23 (m, 1 H), 7.42–7.32 (m, 5 H), 7.27–7.23 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 156.9, 151.8, 136.1, 133.6, 132.4, 129.9, 129.3, 128.6, 127.2, 126.4, 121.1. GC–MS (EI, 70 eV): m/z (%) = 217 (26) [M + 2]+, 215 (80) [M]+, 180 (37), 152 (7), 112 (7), 104 (24), 89 (7), 77 (100), 63 (8), 51 (41). N-(3-Chlorobenzylidene)aniline (3g) 18 Brown oil; yield: 172 mg (80%). 1H NMR (400 MHz, CDCl3): δ = 8.39 (s, 1 H), 7.93 (s, 1 H), 7.73 (d, J = 7.6 Hz, 1 H), 7.45–7.37 (m, 4 H), 7.25–7.20 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 158.6, 151.5, 137.9, 134.9, 131.2, 130.4, 129.2, 128.3, 127.1, 126.3, 120.8. GC–MS (EI, 70 eV): m/z (%) = 217 (26) [M + 2]+, 215 (78) [M]+, 180 (4), 151 (5), 112 (4), 104 (30), 89 (13), 77 (100), 63 (8), 51 (38). N-(4-Chlorobenzylidene)aniline (3h) 18 White solid; yield: 187 mg (87%); mp 75–77 °C. 1H NMR (400 MHz, CDCl3): δ = 8.40 (s, 1 H), 7.83 (d, J = 8.4 Hz, 2 H), 7.43 (d, J = 8.4 Hz, 2 H), 7.41–7.37 (m, 2 H), 7.26–7.19 (m, 3 H). 13C NMR (100 MHz, CDCl3): δ = 158.8, 151.7, 137.3, 134.7, 130.0, 129.2, 129.0, 126.2, 120.8. GC–MS (EI, 70 eV): m/z (%) = 217 (28) [M + 2]+, 215 (40) [M]+, 178 (4), 152 (5), 138 (2), 104 (17), 89 (13), 77 (100), 63 (8), 51 (38). N-(4-Fluorobenzylidene)aniline (3i) 18 Brown oil; yield: 163 mg (82%). 1H NMR (400 MHz, CDCl3): δ = 8.40 (s, 1 H), 7.91–7.87 (m, 2 H), 7.40–7.37 (m, 2 H), 7.25–7.12 (m, 5 H). 13C NMR (100 MHz, CDCl3): δ = 164.7 (d, J C–F = 251 Hz), 158.8, 151.8, 132.6 (d, J C–F = 3 Hz), 130.8 (d, J C–F = 8 Hz), 129.2, 126.1, 120.8, 115.9 (d, J C–F = 22 Hz). GC–MS (EI, 70 eV): m/z (%) = 199 (93) [M]+, 198 (100), 169 (1), 107 (6), 104 (13), 99 (3), 96 (6), 95 (3), 89 (7), 85 (3), 78 (7), 77 (79), 51 (27), 50 (5).
  • 22 Miyake N, Shinohata M, Okubo A. WO 2011021258, 2011
  • 23 Amines 4am; General Procedure A 20 mL Schlenk tube was charged with the appropriate N-arylurea (1 mmol), arylmethanol (5 mmol), and KOt-Bu (3.5 mmol). The mixture was then heated at 135 °C under normal atmospheric air for 24 h while the progress of reaction was monitored by GC and/or TLC. When the reaction was complete, H2O (3 mL) and EtOAc (3 mL) were added and the mixture was stirred vigorously. The organic layer was separated, and the aqueous layer was extracted with EtOAc (2 × 3 mL). The organic layers were combined, dried (Na2SO4), and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel (100–200 mesh), PE–EtOAc] to give the corresponding pure product. The product was characterized by various spectroscopic techniques and its purity was confirmed by GC–MS analysis.
  • 24 Laudien R, Mitzner R. J. Chem. Soc., Perkin Trans. 2 2001; 2226
    • 25a Donthiri RR, Pappula V, Chandra Mohan D, Gaywala HH, Adimurthy S. J. Org. Chem. 2013; 78: 6775
    • 25b Wang X, Wang DZ. Tetrahedron 2011; 67: 3406
    • 25c Xu Q, Li Q, Zhu X, Chen J. Adv. Synth. Catal. 2013; 355: 73
    • 26a Yamaguchi K, Mizuno N. Angew. Chem. Int. Ed. 2002; 41: 4538
    • 26b Taketoshi A, Beh XN, Kuwabara J, Koizumi T, Kanbara T. Tetrahedron Lett. 2012; 53: 3573
  • 27 Sprinzak Y. J. Am. Chem. Soc. 1956; 78: 3207
  • 28 da Silva Filho LC, Lacerda Júnior V, Constantino MG, José da Silva GV. Synthesis 2008; 2527