Synthesis 2014; 46(16): 2225-2233
DOI: 10.1055/s-0033-1341251
paper
© Georg Thieme Verlag Stuttgart · New York

Efficient Synthesis of 2,2,4,4,6,6-Hexanitroadamantane under Mild Conditions

Yifei Ling
a   School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Fax: +86(25)84315030   Email: luojun@njust.edu.cn
,
Pingping Zhang
a   School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Fax: +86(25)84315030   Email: luojun@njust.edu.cn
,
Lu Sun
a   School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Fax: +86(25)84315030   Email: luojun@njust.edu.cn
,
Weipeng Lai
b   Xi’an Modern Chemistry Research Institute, Xi’an 710065, P. R. of China
,
Jun Luo*
a   School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. of China   Fax: +86(25)84315030   Email: luojun@njust.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 15 February 2014

Accepted after revision: 26 March 2014

Publication Date:
13 May 2014 (online)


Abstract

Two strategies have been developed for the synthesis of 2,2,4,4,6,6-hexanitroadamantane (HNA). Both strategies used the readily available diethyl malonate and paraformaldehyde as the starting materials, and utilized acylation followed by intramolecular aldol condensation to construct the adamantane skeleton. The clean nitration to introduce the gem-dinitro groups onto the adamantane skeleton was conducted using dinitrogen pentoxide in refluxing dichloromethane in the presence of urea and 4 Å molecular sieves. The acetylation route was accomplished via 12 steps and afforded HNA in an overall yield of 4.7%, and the formylation route was achieved via 11 steps in 14% overall yield.

Supporting Information

 
  • References

    • 1a Zhang MX, Eaton PE, Gilardi R. Angew. Chem. Int. Ed. 2000; 39: 401
    • 1b Eaton PE, Gilardi RL, Zhang MX. Adv. Mater. 2000; 12: 1143
  • 2 Sollott GP, Gilbert EE. J. Org. Chem. 1980; 45: 5405
    • 3a Frojmovic MM, Just G. Can. J. Chem. 1968; 46: 3719
    • 3b Ungnade HE, Kissinger LW. J. Org. Chem. 1959; 24: 666
    • 3c Luk’yanov OA, Pokhvisneva GV. Russ. Chem. Bull. 1991; 40: 1906
    • 3d Ponzio G. J. Prakt. Chem. 1906; 73: 494
    • 4a Kaplan RB, Shechter H. J. Am. Chem. Soc. 1961; 83: 3535
    • 4b Matacz Z, Piotrowska H, Urbanski T. Pol. J. Chem. 1979; 53: 187
    • 4c Kornblum N, Singh HK, Kelly WJ. J. Org. Chem. 1983; 48: 332
    • 4d Ilovaisky AI, Merkulova VM, Ogibin YN, Nikishin GI. Russ. Chem. Bull. 2005; 54: 1585
  • 5 Archibald TG, Baum K. J. Org. Chem. 1988; 53: 4645
  • 6 Dave PR, Axenrod T, Qi L, Bracuti A. J. Org. Chem. 1995; 60: 1895
    • 7a Moiseev IK, Mratkhuzina TA, Balenkova ES, Makarova NV. Russ. J. Org. Chem. 1999; 35: 839
    • 7b Samsonov VA, Volodarsky LB. Chem. Heterocycl. Compd. (Engl. Transl.) 2000; 36: 996
  • 8 Dave PR, Ferraro M. J. Org. Chem. 1990; 55: 4459
    • 9a Dave PR, Bracuti A, Axenrod T, Liang B. Tetrahedron 1992; 48: 5839
    • 9b Dave PR. US Patent 5202508, 1983
    • 9c Dave PR. US Patent 5180853, 1993
    • 10a McCabe PH, Nelson CR, Routledge W. Tetrahedron 1977; 33: 1749
    • 10b Macnicol DD, McCabe PH, Raphael RA. Synth. Commun. 1972; 2: 185
    • 11a Ohga Y, Takeuchi K. J. Phys. Org. Chem. 1993; 6: 293
    • 11b Piers E, de Waal W, Britton RW. J. Am. Chem. Soc. 1971; 93: 5113
  • 12 von Strandtmann M, Cohen MP, Shavel JJr. J. Org. Chem. 1966; 31: 797
  • 13 Ireland RE, Marshall JA. J. Org. Chem. 1962; 27: 1620
    • 14a Meerwein H, Schürmann W. Justus Liebigs Ann. Chem. 1913; 398: 196
    • 14b Lightner DA, Chang TC, Hefelfinger DT, Jackman DE, Wijekoon WM. D, Givens III JW. J. Am. Chem. Soc. 1985; 107: 7499
    • 14c Mislin G, Miesch M. Eur. J. Org. Chem. 2001; 1753
    • 14d Quast H, Witzel M. Liebigs Ann. Chem. 1993; 699
    • 14e Henkel JG, Faith WC, Hane JT. J. Org. Chem. 1981; 46: 3483
  • 15 Wallentin CJ, Orentas E, Butkus E, Wärnmark K. Synthesis 2009; 864
    • 16a Schaefer JP, Honig LM. J. Org. Chem. 1968; 33: 2655
    • 16b Graetz B, Rychnovsky S, Leu WH, Farmer P, Lin R. Tetrahedron: Asymmetry 2005; 16: 3584
  • 17 Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R. J. Am. Chem. Soc. 1963; 85: 207
    • 18a Presset M, Coquerel Y, Rodriguez J. Chem. Rev. 2013; 113: 525
    • 18b Filippini MH, Rodriguez J. Chem. Rev. 1999; 99: 27
  • 20 Wang XJ, Zhao Y, Liu JT. Synthesis 2008; 3967
    • 21a Mehta G, Pallavi K. Tetrahedron Lett. 2006; 47: 8355
    • 21b Davies HM. L, Dai X, Long MS. J. Am. Chem. Soc. 2006; 128: 2485
    • 21c Kerr WJ, McLaughlin M, Morrison AJ, Pauson PL. Org. Lett. 2001; 3: 2945
    • 21d Brown JA, Irvine S, Kerr WJ, Pearson CM. Org. Biomol. Chem. 2005; 3: 2396
  • 22 Kim JN, Kim JM, Lee KY. Synlett 2003; 821
    • 23a Hajos ZG, Parris DR. J. Org. Chem. 1974; 39: 1615
    • 23b Davies SG, Russell AJ, Sheppard RL, Smith AD, Thomson JE. Org. Biomol. Chem. 2007; 5: 3190
    • 23c Davies SG, Sheppard RL, Smith AD, Thomson JE. Chem. Commun. 2005; 3802
    • 24a Kallan NC, Halcomb RL. Org. Lett. 2000; 2: 2687
    • 24b Lebedyeva IO, Dotsenko VV, Turovtsev VV, Krivokolysko SG, Povstyanoy VM, Povstyanoy MV. Tetrahedron 2012; 68: 9729
    • 24c López-Alvarado P, García-Granda S, Álvarez-Rúa C, Avendaño C. Eur. J. Org. Chem. 2002; 1702
    • 24d Middleton S, Stock LE. Aust. J. Chem. 1980; 33: 2467
    • 24e May DA, Lash TD. J. Org. Chem. 1992; 57: 4820
    • 24f Faure R, Frideling A, Galy JP, Alkorta I, Elguero J. Heterocycles 2002; 57: 307
    • 24g Trudeau S, Deslongchamps P. J. Org. Chem. 2004; 69: 832
  • 25 Uyanik M, Akakura M, Ishihara K. J. Am. Chem. Soc. 2009; 131: 251
    • 26a Stevens TE, Emmons WD. J. Am. Chem. Soc. 1957; 79: 6008
    • 26b Bachman GB, Connon NW. J. Org. Chem. 1969; 34: 4121
  • 27 George C, Gilardi R. Acta Crystallogr., Sect. C 1983; 39: 1674
  • 28 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision A.02. Gaussian Inc; Wallingford: 2009
  • 29 The crystal data for compound 1 have been deposited with the Cambridge Crystallographic Data Centre (no. CCDC 953576). Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK [Fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk] or via www.ccdc.cam.ac.uk/data_request/cif.