Synlett 2014; 25(4): 501-504
DOI: 10.1055/s-0033-1340348
letter
© Georg Thieme Verlag Stuttgart · New York

A Convergent and Stereoselective Total Synthesis of Phomolides G and H

B. V. Subba Reddy*
a   Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Fax: +91(40)27160512   Email: basireddy@iict.res.in
,
P. Sivaramakrishna Reddy
a   Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Fax: +91(40)27160512   Email: basireddy@iict.res.in
,
B. Phaneendra Reddy
a   Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Fax: +91(40)27160512   Email: basireddy@iict.res.in
b   Department of Chemistry, Yogi Vemana University, Kadapa 516003, Andhra Pradesh, India
,
J. S. Yadav
a   Natural Products Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India   Fax: +91(40)27160512   Email: basireddy@iict.res.in
› Author Affiliations
Further Information

Publication History

Received: 20 September 2013

Accepted after revision: 13 November 2013

Publication Date:
10 January 2014 (online)


Abstract

A stereoselective total synthesis of phomolides G and H, a polyketide natural products is described. The synthesis involves organocatalytic enantioselective asymmetric epoxidation, C1-Wittig olefination, and ring-closing metathesis as key steps. The use of organocatalytic MacMillan asymmetric epoxidation for the construction of two chiral centers of phomolides G and H makes this approach more attractive.

Supporting Information

 
  • References and Notes

    • 1a Dräger G, Kirschning A, Thiericke R, Zerlin M. Nat. Prod. Rep. 1996; 365
    • 1b Riatto VB, Pilli RA, Victor MM. Tetrahedron 2008; 64: 2279
    • 1c Boonphong S, Kittakoop P, Isaka M, Pittayakhajonwut D, Tanticharoen M, Thebtaranonth Y. J. Nat. Prod. 2001; 64: 965
    • 1d Ishigami K. Biosci. Biotechnol. Biochem. 2009; 73: 971
    • 1e Greve H, Schupp PJ, Eguereva E, Kehraus S, König GM. J. Nat. Prod. 2008; 71: 1651
  • 2 Li KK, Lu YJ, Song XH, She ZG, Wu XW, An LK, Ye CX, Lin YC. Bioorg. Med. Chem. Lett. 2010; 20: 3326
    • 3a Grabley S, Hammann P, Hutter K, Kirsch R, Kluge H, Thiericke R, Mayer M, Zeeck A. J. Antibiot. 1992; 45: 56
    • 3b Gohrt A, Zeeck A, Hutter K, Kirsch R, Kluge H, Thiericke R. J. Antibiot. 1992; 45: 66
  • 4 Tsuda M, Mugishima T, Komatsu K, Sone T, Tanaka M, Mikami Y, Kobayashi J. J. Nat. Prod. 2003; 66: 412
    • 5a Yuzikhin O, Mitina G, Berestetskiy A. J. Agric. Food Chem. 2007; 55: 7707
    • 5b Evidente A, Cimmino A, Berestetskiy A, Mitina G, Andolfi A, Motta A. J. Nat. Prod. 2008; 71: 31
    • 5c Evidente A, Cimmino A, Berestetskiy A, Mitina G, Andolfi A, Motta A. J. Nat. Prod. 2008; 71: 1897
  • 6 Li Y.-Y, Wang M.-Z, Huanga Y.-J, Shen Y.-M. Mycology 2010; 1: 254
  • 7 Ramesh P, Reddy BC, Meshram HM. Tetrahedron Lett. 2012; 53: 3735
    • 8a Reddy BV. S, Reddy BP, Pandurangam T, Yadav JS. Tetrahedron Lett. 2011; 52: 2306
    • 8b Reddy PJ, Reddy AS, Yadav JS, Reddy BV. S. Tetrahedron Lett. 2012; 53: 4054
    • 8c Reddy BV. S, Reddy BP, Reddy PS. R, Reddy YJ. S, Yadav JS. Tetrahedron Lett. 2013; 54: 4960
    • 8d Reddy BP, Reddy BV. S, Pandurangam T, Yadav JS. Tetrahedron Lett. 2012; 53: 5749
    • 8e Reddy NS. S, Reddy BJ. M, Reddy BV. S. Tetrahedron Lett. 2013; 54: 4228
  • 9 Hungerbaler E, Seebech D. Helv. Chim. Acta 1981; 64: 687
  • 10 Sabitha G, Nayak S, Bhikshapathi M, Yadav JS. Org. Lett. 2011; 13: 382
    • 11a Amatore M, Beeson TD, Brown SP, MacMillan DW. C. Angew. Chem. Int. Ed. 2009; 48: 5121
    • 11b Kumaraswamy G, Murthy AN, Sadaiah K. Tetrahedron 2012; 68: 3179
    • 11c Graham TH, Horning BD, MacMillan DW. C. Org. Synth. 2011; 88: 42
    • 12a Crimmins MT, She J. J. Am. Chem. Soc. 2004; 126: 12790
    • 12b Alcaraz L, Harnett JJ, Mioskowski C, Martel JP, Gall TL, Shin DS, Falck JR. Tetrahedron Lett. 1994; 35: 5449
  • 13 Murga J, Falomir E, García-Fortanet J, Carda M, Marco JA. Org. Lett. 2002; 4: 3447
    • 14a Grubbs RH, Miller SJ, Fu GC. Acc. Chem. Res. 1995; 28: 446
    • 14b Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199
  • 15 Reddy YS, Kadigachalam P, Basak RK, Pal AP. J, Vankar YD. Tetrahedron Lett. 2012; 53: 132
  • 16 Phomolide G (1) [α]D 25 –6.42 (c 1.0, MeOH). 1H NMR (300 MHz, CDCl3 + DMSO-d 6): δ = 5.72 (dd, 1 H, J = 8.6, 15.8 Hz), 5.18 (dd, 1 H, J = 9.4, 15.8 Hz), 5.09 (s, 1 H), 4.70–4.80 (m, 1 H), 4.58 (s, 1 H), 4.35 (q, 1 H, J = 7.4 Hz), 3.30–3.40 (m, 1 H), 2.58–2.70 (m, 2 H), 2.34 (t, 1 H, J = 10.4 Hz), 1.80–1.90 (m, 2 H), 1.41–1.55 (m, 2 H), 1.23–1.36 (m, 2 H), 0.88 (t, 3 H, J = 7.4 Hz). 13C NMR (75 MHz, CDCl3 + DMSO-d 6): δ = 169.8, 135.8, 126.8, 77.2, 74.8, 71.9, 70.4, 44.4, 40.1, 38.1, 17.3, 13.0. IR (neat): νmax = 3356, 2926, 2858, 1743, 1718, 1266, 1198, 776 cm–1. ESI-HRMS: m/z calcd for C12H20O5Na: 267.1208; found: 267.1253. Phomolide H (2) [α]20 D –16.5 (c 1.0, CHCl3). 1H NMR (300 MHz, CDCl3): δ = 5.92 (dd, 1 H, J = 2.8, 15.8 Hz), 5.60 (dd, 1 H, J = 9.1, 15.8 Hz), 4.66 (s, 1 H), 3.75 (t, 1 H, J = 9.3 Hz), 3.35–3.36 (m, 2 H), 3.31 (s, 3 H), 2.57 (dd, 1 H, J = 2.9, 11.8 Hz), 2.47 (dd, 1 H, J = 2.9, 11.8 Hz), 1.83–1.85 (m, 2 H), 1.47–1.35 (m, 2 H), 1.30–1.34 (m, 2 H), 0.91 (t, 3 H, J = 7.5 Hz). 13C NMR (75 MHz, CDCl3): δ = 170.1, 135.5, 126.4, 78.8, 75.9, 72.2, 66.6, 48.8, 43.6, 41.1, 38.9, 18.1, 13.1. IR (neat): νmax = 3356, 2924, 2853, 1734, 1385, 1266, 1163, 1092, 775 cm–1. ESI-HRMS: m/z calcd for C13H22O5Na: 281.1365; found: 281.1432.