Synlett 2014; 25(4): 564-568
DOI: 10.1055/s-0033-1340312
letter
© Georg Thieme Verlag Stuttgart · New York

Exploring the Use of the Suzuki Coupling Reaction in the Synthesis of 4′-Alkyl-2′-hydroxyacetophenones

Christelle Pouget*
a   EA 1069-GDR CNRS 3049, Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges, France   Fax: +33(5)55435801   Email: christelle.pouget@unilim.fr
,
Patrick Trouillas
a   EA 1069-GDR CNRS 3049, Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges, France   Fax: +33(5)55435801   Email: christelle.pouget@unilim.fr
,
Rokhaya Gueye
a   EA 1069-GDR CNRS 3049, Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges, France   Fax: +33(5)55435801   Email: christelle.pouget@unilim.fr
,
Yves Champavier
b   Service Commun de Recherche et d’Analyses de Biomolécules de Limoges (SCRABL), Université de Limoges, 2 rue du Docteur Marcland, 87025 Limoges, France
,
Aurélie Laurent
a   EA 1069-GDR CNRS 3049, Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges, France   Fax: +33(5)55435801   Email: christelle.pouget@unilim.fr
,
Jean-Luc Duroux
a   EA 1069-GDR CNRS 3049, Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges, France   Fax: +33(5)55435801   Email: christelle.pouget@unilim.fr
,
Vincent Sol
a   EA 1069-GDR CNRS 3049, Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges, France   Fax: +33(5)55435801   Email: christelle.pouget@unilim.fr
,
Catherine Fagnere
a   EA 1069-GDR CNRS 3049, Laboratoire de Chimie des Substances Naturelles, Faculté de Pharmacie, 2 rue du Docteur Marcland, 87025 Limoges, France   Fax: +33(5)55435801   Email: christelle.pouget@unilim.fr
› Author Affiliations
Further Information

Publication History

Received: 29 October 2013

Accepted after revision: 01 November 2013

Publication Date:
06 December 2013 (online)


Abstract

A series of 4′-alkyl-2′-hydroxyacetophenones were prepared by Suzuki cross-coupling reactions of 4′-bromo-2′-hydroxyacetophenone. In these reactions, alkyl(trifluoro)borates were found to be better reactants than alkylboronic acids. 4′-Alkyl-2′-hydroxyacetophenones are key intermediates for the further synthesis of ­lipoflavonoids that are more readily incorporated into lipid bilayer membranes than flavonoids and should, therefore, have superior ­biological effects through increased bioavailability.

 
  • References

  • 1 Suzuki A. J. Organomet. Chem. 1999; 576: 147
  • 2 Zou G, Krishna Reddy Y, Falck JR. Tetrahedron Lett. 2001; 42: 7213
  • 3 Wawrzyniak P, Heinicke J. Tetrahedron Lett. 2006; 47: 8921
  • 4 Baltus CB, Press NJ, Spencer J. Synlett 2012; 23: 2477
  • 5 Ehlers P, Petrosyan A, Ghochikyan TV, Saghyan AS, Neubauer A, Lochbrunner S, Langer P. Synlett 2013; 24: 359
  • 6 Littke AF, Dai C, Fu GC. J. Am. Chem. Soc. 2000; 122: 4020
  • 7 So FV, Guthrie N, Chambers AF, Carroll KK. Cancer Lett. 1997; 112: 127
  • 8 Pouget C, Fagnere C, Basly J.-P, Besson A.-E, Champavier Y, Habrioux G, Chulia A.-J. Pharm. Res. 2002; 19: 286
  • 9 Rice-Evans CA, Miller NJ, Paganga G. Free Radical Biol. Med. 1996; 20: 933
  • 10 Erlund I. Nutr. Res. (N. Y., NY U. S.) 2004; 24: 851
  • 11 Dangles O. Curr. Org. Chem. 2012; 16: 692
  • 12 Movileanu L, Neagoe I, Flonta ML. Int. J. Pharm. (Amsterdam, Neth.) 2000; 205: 135
  • 13 Pawlikowska-Pawlęga B, Gruszecki W, Misiak L, Paduch R, Piersiak T, Zarzyka B, Pawelec J, Gawron A. Biochim. Biophys. Acta, Biomembr. 2007; 1768: 2195
  • 14 Košinová P, Berka K, Wykes M, Otyepka M, Trouillas P. J. Phys. Chem. B 2012; 116: 1309
  • 15 Bennett CJ, Caldwell ST, McPhail DB, Morrice PC, Duthie GG, Hartley RC. Bioorg. Med. Chem. 2004; 12: 2079
  • 16 Britton RG, Horner-Glister E, Pomenya OA, Smith EE, Denton R, Jenkins PR, Steward WP, Brown K, Gescher A, Sale S. Eur. J. Med. Chem. 2012; 54: 952
  • 17 Moriarty RM, Grubjesic S, Surve BC, Chandersekera SN, Prakash O, Naithani R. Eur. J. Med. Chem. 2006; 41: 263
  • 18 Rao YK, Fang S-H, Tzenga Y.-M. Bioorg. Med. Chem. 2005; 13: 6850
  • 19 Zhuravel MA, Nguyen ST. Tetrahedron Lett. 2001; 42: 7925
  • 20 Kabalka GW, Pagni RM, Hair CM. Org. Lett. 1999; 1: 1423
  • 21 Molander GA, Yun CS. Tetrahedron 2002; 58: 1465
  • 22 Bumagin NA, Bykov VV. Tetrahedron 1997; 53: 14437
  • 23 Tikad A, Dehbi O, Akssira M, Aadil M, Massip S, Leger JM, Jarry C, Guillaumet G, Routier S. Synthesis 2013; 45: 491
  • 24 Koini EN, Avlonitis N, Martins-Duarte ES, de Souza W, Vommaro RC, Calogeropoulou T. Tetrahedron 2012; 68: 10302
  • 25 El Akkaoui A, Bassoude I, Koubachi J, Berteina-Raboin S, Mouaddib A, Guillaumet G. Tetrahedron 2011; 67: 7128
  • 26 Molander GA, Ito T. Org. Lett. 2001; 3: 393
  • 27 Molander GA, Yun CS, Ribagorda M, Biolatto B. J. Org. Chem. 2003; 68: 5534
  • 28 van den Hoogenband A, Lange JH. M, Terpstra JW, Koch M, Visser GM, Visser M, Korstanje TJ, Jastrzebski JT. B. H. Tetrahedron Lett. 2008; 49: 4122
  • 29 Dreher SD, Lim SE, Sandrock DL, Molander GA. J. Org. Chem. 2009; 74: 3626
  • 30 Dreher SD, Dormer PG, Sandrock DL, Molander GA. J. Am. Chem. Soc. 2008; 130: 9257
  • 31 4′-Alkyl-2′-hydroxyacetophenones; General Procedure with Alkylboronic Acids Alkylboronic acid RB(OH)2 (1.1 equiv), PdCl2·dppf (0.1 equiv), and 3 M aq NaOH (3 equiv) were added to a solution of 4′-bromo-2′-hydroxyacetophenone in THF (10 mL), and the mixture was refluxed for the appropriate time. After cooling, the mixture was diluted with water (10 mL), acidified with 3 M aq HCl, and extracted with CH2Cl2 (3 × 20 mL). The organic layers were combined, dried (Na2SO4), filtered, and concentrated in vacuo. The crude product was purified by TLC [silica gel, hexane–EtOAc (9:1)]. All the compounds were obtained as colorless oils.
  • 32 4′-Alkyl-2′-hydroxyacetophenones; General Procedure for Microwave-Assisted Synthesis with Potassium Alkyl(trifluoro)borates 4′-Bromo-2′-hydroxyacetophenone, K+ (RBF3) (1.5 equiv), Pd(OAc)2 (0.1 equiv), RuPhos (0.2 equiv), 3 M aq NaOH (0.5 mL, 3 equiv), and toluene (5 mL) were placed in a 10 mL microwave vessel that was sealed with a pressure lock. The mixture was then subjected to microwave irradiation in an Anton Paar Monowave 300 microwave reactor at 120 °C (150 W) for 5 h.
  • 33 4′-Butyl-2′-hydroxyacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.93 (t, J = 7.3 Hz, 3 H), 1.35 (m, 2 H), 1.60 (m, 2 H), 2.60 (t, J = 7.5 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.6, 8.2 Hz, 1 H, H-5′), 6.79 (d, J = 1.2 Hz, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 13.9 (CH3), 22.3 (CH2), 26.5 (CH3–CO), 32.8 (CH2), 35.9 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.0 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C12H17O2: 193.1223; found: 193.1225.
  • 34 4′-Decyl-2′-hydroxyacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.27 (m, 14 H), 1.61 (m, 2 H), 2.59 (t, J = 7.5 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.3, 8.2 Hz, 1 H, H-5′), 6.79 (br s, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 14.1 (CH3), 22.7 (CH2), 26.5 (CH3–CO), 29.2 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 29.6 (CH2), 30.7 (CH2), 31.9 (CH2), 36.2 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.1 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C18H29O2: 277.2162; found: 277.2162.
  • 35 4′-Hexyl-2′-hydroxyacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.30 (m, 6 H), 1.61 (m, 2 H), 2.59 (t, J = 7.4 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.6, 8.2 Hz, 1 H, H-5′), 6.79 (d, J = 1.3 Hz, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 14.1 (CH3), 22.6 (CH2), 26.5 (CH3–CO), 28.9 (CH2), 30.6 (CH2), 31.7 (CH2), 36.2 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.0 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C14H21O2: 221.1536; found: 221.1538.
  • 36 2′-Hydroxy-4′-octylacetophenone 1H NMR (400 MHz, CDCl3): δ = 0.88 (t, J = 6.8 Hz, 3 H), 1.28 (m, 10 H), 1.61 (m, 2 H), 2.59 (t, J = 6.7 Hz, 2 H), 2.60 (s, 3 H, COCH3), 6.72 (dd, J = 1.1, 8.2 Hz, 1 H, H-5′), 6.79 (br s, 1 H, H-3′), 7.63 (d, J = 8.2 Hz, 1 H, H-6′), 12.28 (s, 1 H, OH). 13C NMR (100 MHz, CDCl3): δ = 14.1 (CH3), 22.7 (CH2), 26.5 (CH3–CO), 29.2 (2 × CH2), 29.4 (CH2), 30.7 (CH2), 31.9 (CH2), 36.2 (CH2), 117.8 (Cq, C-1′), 117.8 (CH, C-3′), 119.6 (CH, C-5′), 130.6 (CH, C-6′), 153.1 (Cq, C-4′), 162.6 (Cq, C-2′), 203.9 (C=O). HRMS (ESI): m/z [M + H]+ calcd for C16H25O2: 249.1849; found: 249.1850.