Synlett 2013; 24(20): 2763-2767
DOI: 10.1055/s-0033-1340012
letter
© Georg Thieme Verlag Stuttgart · New York

[3+2] Cycloaddition of Aziridines and Alkenes Catalyzed by a Cationic Manganese Porphyrin

Takuya Ozawa
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
,
Takuya Kurahashi*
a   Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
b   JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
,
Seijiro Matsubara*
b   JST, ACT-C, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan   Fax: +81(75)3832438   Email: kurahashi.takuya.2c@kyoto-u.ac.jp   Email: matsubara.seijiro.2e@kyoto-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 03 September 2013

Accepted after revision: 16 September 2013

Publication Date:
05 November 2013 (online)


Abstract

A formal [3+2] cycloaddition between aziridines and alkenes to give the corresponding pyrrolidines was successfully carried out in the presence of a cationic manganese porphyrin catalyst. The use of the porphyrin catalyst allowed, for the first time, styrene derivatives to react with aziridines.

Supporting Information

 
  • References and Notes


    • For recent reviews on aziridine chemistry, see:
    • 1a Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 1b Watson ID. G, Yu L, Yudin AK. Acc. Chem. Res. 2006; 39: 194
    • 1c Hou XL, Wu J, Fan RH, Ding CH, Luo ZB, Dai LX. Synlett 2006; 181
    • 1d Singh GS, D’hooghe M, De Kimpe N. Chem. Rev. 2007; 107: 2080
    • 1e Dauban P, Malik G. Angew. Chem. Int. Ed. 2009; 48: 9026
    • 1f Lu P. Tetrahedron 2010; 66: 2549
    • 1g Hu XE. Tetrahedron 2004; 60: 2701
    • 1h Pellissier H. Tetrahedron 2010; 66: 1509

      For examples of thermal aziridine ring-opening for azomethine ylide formation, see:
    • 2a Coldham I, Hufton R. Chem. Rev. 2005; 105: 2765
    • 2b Pandey G, Banerjee P, Gadre SR. Chem. Rev. 2006; 106: 4484
    • 2c Heine HW, Peavy R. Tetrahedron Lett. 1965; 3123
    • 2d Padwa A, Hamilton L. Tetrahedron Lett. 1965; 4363
    • 2e Huisgen R, Scheer W, Szeimies G, Huber H. Tetrahedron Lett. 1966; 7: 397

    • For an example for application of the reaction in total synthesis, see:
    • 2f Takano S, Iwabuchi Y, Ogasawara K. J. Am. Chem. Soc. 1987; 109: 5523

      For examples of Lewis acid-mediated syntheses of pyrrolidine derivatives, see:
    • 3a Bergmeier SC, Fundy SL, Seth PP. Tetrahedron 1999; 55: 8025
    • 3b Bergmeier SC, Katz SJ, Huang J, McPherson H, Donoghue PJ, Reed DD. Tetrahedron Lett. 2004; 45: 5011
    • 3c Madhushaw RJ, Hu C.-C, Liu R.-S. Org. Lett. 2002; 4: 4151
    • 3d Nakagawa M, Kawahara M. Org. Lett. 2000; 2: 953
    • 3e Ungureanu I, Bologa C, Chayer S, Mann A. Tetrahedron Lett. 1999; 40: 5315
    • 3f Ungureanu I, Klotz P, Mann A. Angew. Chem. Int. Ed. 2000; 39: 4615
    • 3g Ungureanu I, Klotz P, Schoenfelder A, Mann A. Tetrahedron Lett. 2001; 42: 6087

      For examples of Lewis acid mediated syntheses of imidazoline derivatives, see:
    • 4a Hiyama T, Koide H, Fujita S, Nozaki H. Tetrahedron 1973; 29: 3137
    • 4b Prasad BA. B, Pandey G, Singh VK. Tetrahedron Lett. 2004; 45: 1137
    • 4c Yadav VK, Sriramurthy V. J. Am. Chem. Soc. 2005; 127: 16366

      For examples of Lewis acid mediated and catalyzed syntheses of oxazoline derivatives, see:
    • 5a Gandhi S, Bisai A, Prasad BA. B, Singh VK. J. Org. Chem. 2007; 72: 2133
    • 5b Kang B, Miller AW, Goyal S, Nguyen ST. Chem. Commun. 2009; 3928

      For pioneering studies on acid catalyzed [3+2] cycloaddition of aziridines, see references 3e–g. For some other examples of Lewis acid-catalyzed [3+2] cycloaddition reactions to form pyrrolidine derivatives, see reference 3a and:
    • 6a Yadav JS, Reddy BV. S, Pandey SK, Srihari P, Prathap I. Tetrahedron Lett. 2001; 42: 9089
    • 6b Fan J, Gao L, Wang Z. Chem. Commun. 2009; 5021
    • 6c Wender PA, Strand D. J. Am. Chem. Soc. 2009; 131: 7528
    • 6d Cardoso AL, Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2012; 6479
    • 7a Fujiwara K, Kurahashi T, Matsubara S. J. Am. Chem. Soc. 2012; 134: 5512
    • 7b Wakabayashi R, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 4794
    • 7c Ozawa T, Kurahashi T, Matsubara S. Org. Lett. 2012; 14: 3008
    • 7d Terada T, Kurahashi T, Matsubara S. Heterocycles 2012; 85: 2415

      For some examples of the use of metalloporphyrins in nonoxidative bond formation, see:
    • 8a Suda K, Baba K, Nakajima S.-I, Takanami T. Chem. Commun. 2002; 2570
    • 8b Suda K, Kikkawa T, Nakajima S.-I, Takanami T. J. Am. Chem. Soc. 2004; 126: 9554
    • 8c Suda K, Baba K, Nakajima S.-I, Takanami T. Tetrahedron Lett. 1999; 40: 7243
    • 8d Schmidt JA. R, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2005; 127: 11426
    • 8e Zhou C.-Y, Chan PW. H, Che C.-M. Org. Lett. 2006; 8: 325
    • 8f Nakano K, Kobayashi K, Ohkawara T, Imoto H, Nozaki K. J. Am. Chem. Soc. 2013; 135: 8456

      For some recent examples of cyclopropanation with a metalloporphyrin catalyst, see:
    • 9a Morandi B, Carreira EM. Science 2012; 335: 1471
    • 9b Anding BJ, Ellern A, Woo LK. Organometallics 2012; 31: 3628
    • 9c Xu X, Lu H, Ruppel JV, Cui X, de Mesa SL, Wojtas L, Zhang XP. J. Am. Chem. Soc. 2011; 133; 15292
    • 9d Intrieri D, Caselli A, Gallo E. Eur. J. Inorg. Chem. 2011; 5071
    • 9e Zhou C.-Y, Huang J.-S, Che C. Synlett 2010; 2681
    • 9f Doyle MP. Angew. Chem. Int. Ed. 2009; 48: 850
    • 9g For P450 enzyme-catalyzed cyclopropanation, see: Coelho PS, Brustad EM, Kannan A, Arnold FH. Science 2013; 339: 307

      For some selected examples of aziridination with a metalloporphyrin catalyst, see:
    • 10a Ruppel JV, Jones JE, Huff CA, Kamble RM, Chen Y, Zhang XP. Org. Lett. 2008; 10: 1995
    • 10b Li Y, Chan PW. H, Zhu N.-Y, Che C.-M, Kwong H.-L. Organometallics 2004; 23: 54
    • 10c Au S.-M, Huang J.-S, Yu W.-Y, Fung W.-H, Che C.-M. J. Am. Chem. Soc. 1999; 121: 9120

      For some selected examples of olefination of aldehydes by diazo compounds with a metalloporphyrin catalyst, see:
    • 11a Chen J, Che C.-M. Angew. Chem. Int. Ed. 2004; 43: 4950
    • 11b Chen Y, Huang L, Ranade MA, Zhang XP. J. Org. Chem. 2003; 68: 3714
    • 11c Mirafzal GA, Cheng G, Woo LK. J. Am. Chem. Soc. 2002; 124: 176
  • 12 Nijamudheen A, Jose D, Datta A. J. Phys. Chem. C 2011; 115: 2187
    • 13a Williamson MN, Hill CL. Inorg. Chem. 1987; 26: 4155
    • 13b Munro OQ, Camp GL. Acta Crystallogr., Sect. C 2003; 59: m132
    • 13c Williamson MM, Hill CL. Inorg. Chem. 1986; 25: 4668
    • 13d Hill HA. O, Macfarlane AJ, Williams RJ. P. J. Chem. Soc. A 1969; 1704
    • 13e Reed CA, Kouba JK, Grimes CJ, Cheung SK. Inorg. Chem. 1978; 17: 2666
    • 13f Kirner JF, Reed CA, Scheidt WR. J. Am. Chem. Soc. 1977; 99: 1093
  • 14 Manganese Porphyrin Catalyzed [3+2] Cycloaddition of Aziridines and Alkenes; General Procedure A screw-cap vial was charged sequentially with [Mn(TPP)][SbF6] (0.02 mmol, 19 mg), aziridine 1 (0.2 mmol), alkene 2 (0.6 mmol), and anhyd DCE (0.8 mL) in a dry box. The vial was sealed and the mixture was stirred at 100 °C for 12 h. The mixture was then diluted with 10:1 hexane–EtOAc (3 mL) and passed through a short pad of silica gel, which was washed with 1:1 hexane–EtOAc (2 × 10 mL). The mixture was then concentrated in vacuo to give a crude product that was purified by flash column chromatography [silica gel, (20 g, 2 × 15 cm), hexane–EtOAc (5:1)]. 2-Phenyl-4-(4-tolyl)-1-tosylpyrrolidine (3aa) Colorless oil; yield: 58 mg (75%); TLC: Rf = 0.40 (hexane–EtOAc, 5:1). IR (neat): 3028, 2954, 2923, 2870, 1599, 1494, 1348, 1338, 1182, 1027, 814, 662 cm–1. 1H NMR (500 MHz, CDCl3): δ = 7.74–7.73 (m, 1.8 H) 7.65–7.64 (m, 2 H), 7.42–7.24 (m, 13.3 H), 7.11–7.02 (m, 5.8 H), 6.93–6.92 (m, 1.8 H), 5.06 (d, J = 8.0 Hz, 0.9 H), 4.81 (dd, J = 6.5, 10 Hz, 1 H), 4.17–4.14 (m, 1 H), 4.02 (dd, J = 7.5, 9.0 Hz, 0.9 Hz), 3.52–3.41 (m, 1.9 H), 3.28 (dd, J = 9.5, 10.5 Hz, 0.9 H), 2.97–2.89 (m, 1 H), 2.69–2.65 (m, 1 H), 2.46 (s, 2.7 H), 2.44 (s, 3 H), 2.32 (s, 3 H), 2.30 (s, 2.7 H), 2.18–2.14 (m, 0.9 H), 2.11–2.00 (m, 1.9 H). 13C NMR (125.7 MHz, CDCl3): δ = 143.4, 143.2, 142.9, 142.6, 136.7, 136.6, 136.5, 135.9, 135.8, 134.8, 129.6, 129.5, 129.3, 129.2, 128.4, 128.3, 127.6, 127.4, 127.2, 127.1, 126.8, 126.8, 126.4, 126.1, 64.5, 63.0, 55.9, 55.1, 44.4, 43.3, 42.1, 41.0, 21.5, 21.4, 20.9, 20.9. HRMS (ESI+): m/z [M + H]+ calcd for C24H26NO2S: 392.1679; found: 392.1663.