Synlett 2013; 24(17): 2245-2248
DOI: 10.1055/s-0033-1339844
letter
© Georg Thieme Verlag Stuttgart · New York

Microwave-Promoted Efficient Synthesis of Benzo[h]quinolines by Solvent-Free Three-Component Imino-Diels–Alder Reaction under One-Pot Condi­tions

Manas M. Sarmah
Medicinal Chemistry Division, CSIR-North-East Institute of Science & Technology, Jorhat, Assam-785006, India   Fax: +91(376)2370011   Email: dr_dprajapati2003@yahoo.co.uk
,
Debajyoti Bhuyan
Medicinal Chemistry Division, CSIR-North-East Institute of Science & Technology, Jorhat, Assam-785006, India   Fax: +91(376)2370011   Email: dr_dprajapati2003@yahoo.co.uk
,
Dipak Prajapati*
Medicinal Chemistry Division, CSIR-North-East Institute of Science & Technology, Jorhat, Assam-785006, India   Fax: +91(376)2370011   Email: dr_dprajapati2003@yahoo.co.uk
› Author Affiliations
Further Information

Publication History

Received: 25 June 2013

Accepted after revision: 22 August 2013

Publication Date:
23 September 2013 (online)


Abstract

An one-pot, solvent-free imino Diels–Alder reaction has been developed under microwave conditions using 1-naphthylamine, aldehydes, and electron-deficient terminal alkynes in the presence of a catalytic amount of In(OTf)3 for construction of benzo[h]quinoline derivatives in short reaction times. The method is clean and operationally simple.

 
  • References and Notes

    • 1a Fodor GB, Colasanti B In Alkaloids: Chemical and Biological Perspectives . Vol. 3. Pelletier SW. Wiley; New York: 1985: 1-91
    • 1b Daly JW, Spande TF In Alkaloids: Chemical and Biological Perspectives . Vol. 4. Pelletier SW. Wiley; New York: 1986: 1-254
    • 1c Boger DL, Weinreb SM. Hetero Diels–Alder Methodology in Organic Synthesis . Academic Press; New York: 1987. Chap. 2 and 9
  • 2 Jørgensen KA. Angew. Chem. Int. Ed. 2000; 39: 3558
    • 3a Vicario J, Aparicio D, Palacios F. Tetrahedron Lett. 2011; 52: 4109
    • 3b Tambar UK, Lee SK, Leighton JL. J. Am. Chem. Soc. 2010; 132: 10248
    • 3c Costantino U, Fringuelli F, Orru M, Nocchetti M, Piermatti O, Pizzo F. Eur. J. Org. Chem. 2009; 1214
    • 3d Leca D, Gaggini F, Cassayre J, Loiseleur O. J. Org. Chem. 2007; 72: 4284
    • 3e Liu H, Cun L.-F, Mi A.-Q, Jiang Y.-Z, Gong L.-Z. Org. Lett. 2006; 8: 6023
    • 3f Itoh J, Fuchibe K, Akiyama T. Angew. Chem. Int. Ed. 2006; 45: 4796

      For reviews, see:
    • 4a Balasubramanian M, Keay JG. In Comprehensive Heterocyclic Chemistry II . Vol. 5. Katritzky AR, Rees CW, Scriven EF. V. Pergamon Press; Oxford: 1996: 245
    • 4b Wagman AS, Wentland MP In Comprehensive Medicinal Chemistry II . Vol. 7. Taylor JB, Triggle DJ. Elsevier; Oxford: 2006: 567-596
    • 4c Michael JP. Nat. Prod. Rep. 2008; 25: 166
    • 4d Michael JP. Nat. Prod. Rep. 2007; 24: 223
    • 4e Michael JP. Nat. Prod. Rep. 2005; 22: 627
    • 5a Bray PG, Ward SA, O’Neil PM. Curr. Top. Microbiol. Immunol. 2005; 295: 3
    • 5b Steere AC, Angelis SM. Arthritis Rheum. 2006; 54: 3079
    • 5c Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Lancet Infect. Dis. 2003; 3: 722
    • 5d Kager PA. Ned. Tijdschr. Geneeskd. 2005; 149: 51
    • 5e Hertzberg RP, Caranfa MJ, Holden KG, Jakas DR, Gallagher G, Mattern MR, Mong SM, Bartus JO, Johnson RK, Kingsbury WD. J. Med. Chem. 1989; 32: 715
    • 5f Szmuszkovicz J, Darlington WH, Von Voigtlander PF. WO 8804292 A1, ; Chem. Abstr. 1988, 110, 75335
    • 5g Seeman P, Guan H.-C, Nobrega J, Jiwa D, Markstein R, Balk J.-H, Picetti R, Borrelli E, Tol HH. M. V. Synapse 1997; 25: 137
    • 6a Jansen O, Akhmedjanova V, Angenot L, Balansard G, Chariot A, Ollivier E, Tits M, Frederich M. J. Ethnopharmacol. 2006; 105: 241
    • 6b Takimoto CH, Calvo E. Principles of Oncologic Pharmacotherapy . In Cancer Management: A Multidisciplinary Approach . Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ. Oncology Group, CMPMedica; New York: 2008. 11 ed
    • 6c Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AI, Sim GA. J. Am. Chem. Soc. 1966; 88: 3888
    • 7a Baruah B, Bhuyan PJ. Tetrahedron 2009; 65: 7099
    • 7b Kalita PK, Baruah B, Bhuyan PJ. Tetrahedron Lett. 2006; 47: 7779
    • 7c Yi CS, Yun SY. J. Am. Chem. Soc. 2005; 127: 17000
    • 7d Amii H, Kishikawa Y, Uneyama K. Org. Lett. 2001; 3: 1109
  • 8 Kundu D, Majee A, Hajra A. Tetrahedron Lett. 2009; 50: 2668
  • 9 Prajapati D, Bhuyan D, Gohain M, Hu W. Mol. Diversity 2011; 15: 257
    • 11a Smith BM, Kubczyk TM, Graham AE. Tetrahedron 2012; 68: 7775
    • 11b Smith BM, Graham AE. Tetrahedron Lett. 2011; 52: 6281
    • 11c Golden KC, Gregg BT, Quinn JF. Tetrahedron Lett. 2010; 51: 4010
    • 11d Zhang J, Blazecka PG, Angell P, Lovdahl M, Curran TT. Tetrahedron 2005; 61: 7801
    • 11e Ali T, Chauhan KK, Frost CG. Tetrahedron Lett. 1999; 40: 5621
    • 11f Chauhan KK, Frost CG. J. Chem. Soc., Perkin Trans. 1 2000; 3015
    • 11g Cintas P. Synlett 1995; 1097
    • 11h Podlech J, Maier TC. Synthesis 2003; 633
    • 11i Loh TP, Chua GL. Chem. Commun. 2006; 2739
    • 11j Hoppe HA. F, Lloyd-Jones GC, Murray M, Peakman TM, Walsh KE. Angew. Chem. Int. Ed. 1998; 37: 1545
    • 12a Lekhok KC, Prajapati D, Boruah RC. Synlett 2008; 655
    • 12b Prajapati D, Gohain M. Beilstein J. Org. Chem. 2006; 2
    • 12c Borah HN, Prajapati D, Boruah RC. Synlett 2005; 2823
    • 12d Prajapati D, Laskar DD, Gogoi BJ, Devi G. Tetrahedron Lett. 2003; 44: 8725
    • 12e Ilias M, Barman DC, Prajapati D, Sandhu JS. Tetrahedron Lett. 2002; 43: 1877
    • 13a Moseley JD, Kappe CO. Green Chem. 2011; 13: 794
    • 13b Lidstrom P, Tierney J, Wathey B, Westman J. Tetrahedron 2001; 57: 9225
    • 14a Loupy A. C. R. Chim. 2004; 7: 103
    • 14b Microwaves in Organic Synthesis . Loupy A. Wiley-VCH; Weinheim: 2006. 2nd ed.
    • 14c Strauss CR, Varma RS. Top. Curr. Chem. 2006; 266: 199
    • 14d Varma RS. Green Chem. Lett. Rev. 2007; 1: 37
    • 14e Jeselnik M, Varma RS, Polanc S, Kocevar M. Chem. Commun. 2001; 1716
    • 14f Larhed M, Moberg C, Hallberg A. Acc. Chem. Res. 2002; 35: 717
  • 15 Rodriguez AM, Prieto P, de la Hoz A, Diaz-Ortiz A. Org. Biomol. Chem. 2011; 9: 2371
    • 16a Sarmah MM, Sarma R, Prajapati D, Hu W. Tetrahedron Lett. 2013; 54: 267
    • 16b Sarma R, Sarmah MM, Prajapati D. J. Org. Chem. 2012; 77: 2018
    • 16c Lekhok KC, Bhuyan D, Prajapati D, Boruah RC. Mol. Diversity 2010; 14: 841
    • 16d Prajapati D, Borah KJ, Gohain M. Synlett 2007; 595
    • 16e Prajapati D, Gohain M, Thakur AJ. Bioorg. Med. Chem. Lett. 2006; 16: 3537
  • 17 General Procedure 1-Naphthylamine (1, 1.0 mmol), 4-fluorobenzaldehyde (2a, 1.0 mmol), and methyl propiolate (3a, 1.2 mmol) were irradiated in a closed vessel with In(OTf)3 (10 mol%) without solvent in a Synthos 3000 microwave reactor at 720 W, 120 °C, and 10 bar for 8 min. The crude product mixture was dissolved in CHCl3 and directly purified by column chromatography eluting with EtOAc–hexane (1:9) to obtain pure methyl-2-(4-fluorophenyl)benzo[h]quinoline-4-carboxylate (4a). Compound 4a: off-white solid; mp 116–117 °C. 1H NMR (300 MHz, CDCl3): δ = 9.32–9.37 (m, 1 H, arom), 8.64 (s, 1 H, COOCH3C=CH), 7.05–7.95 (m, 9 H, arom), 3.81 (s, 3 H, CH3). 13C NMR (75 MHz, CDCl3): δ = 168.6, 155.5, 147.1, 138.6, 136.8, 136.7, 134.5, 131.07, 131.0, 130.9, 129.1, 128.6, 127.9, 127.3, 125.2, 124.8, 124.7, 123.9, 115.3, 115.0, 52.5. IR (CHCl3): 1726.7, 1603.3, 1589.0, 1561.0, 1512.7 cm–1. GC–MS: m/z = 331 [M]+. Anal. Calcd for C21H14FNO2: C, 76.12; H, 4.26; F, 5.73; N, 4.23; O, 9.66. Found: C, 76.10; H, 4.20; F, 5.69; N, 4.21; O, 9.61.
  • 18 Zani L, Bolm C. Chem. Commun. 2006; 4263 ; and references cited therein
  • 19 1-Naphthylamine (1, 1.0 mmol), 4-fluorobenzaldehyde (2a, 1.0 mmol), and methyl propiolate (3a, 1.2 mmol) were refluxed with In(OTf)3 (10 mol%) in toluene (10 mL) under air until completion (TLC), the solvent was distilled off under reduced pressure, and the product was purified by column chromatography eluting with EtOAc–hexane (1:9) to obtain pure methyl-2-(4-fluorophenyl)benzo[h]quinoline-4-carboxylate (4a).