Synlett 2013; 24(17): 2315-2319
DOI: 10.1055/s-0033-1339797
letter
© Georg Thieme Verlag Stuttgart · New York

One-Pot Copper-Catalyzed Three-Component Synthesis of Quinoxalines by Condensation and C−N Bond Formation

Hua Yuan
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, P. R. of China
b   Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, P. R. of China   Fax: +86(931)8912582   Email: chbh@lzu.edu.cn
,
Kangning Li
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, P. R. of China
b   Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, P. R. of China   Fax: +86(931)8912582   Email: chbh@lzu.edu.cn
,
Yongxin Chen
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, P. R. of China
b   Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, P. R. of China   Fax: +86(931)8912582   Email: chbh@lzu.edu.cn
,
Yu Wang
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, P. R. of China
b   Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, P. R. of China   Fax: +86(931)8912582   Email: chbh@lzu.edu.cn
,
Jiaojiao Cui
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, P. R. of China
b   Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, P. R. of China   Fax: +86(931)8912582   Email: chbh@lzu.edu.cn
,
Baohua Chen*
a   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu, Lanzhou 730000, P. R. of China
b   Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, Lanzhou 730000, P. R. of China   Fax: +86(931)8912582   Email: chbh@lzu.edu.cn
› Author Affiliations
Further Information

Publication History

Received: 06 July 2013

Accepted after revision: 20 August 2013

Publication Date:
19 September 2013 (online)


Abstract

A novel way of synthesizing quinoxalines has been developed that involves condensation and C−N bond formation in a copper-catalyzed, one-pot, three-component reaction. The reaction was optimized when 2-iodoanilines (1.0 equiv), arylacetaldehydes (2.0 equiv), sodium azide (1.2 equiv), CuI (10 mol%), DMEDA (10 mol%), and K2CO3 (1.0 equiv) were reacted in DMSO at 80 °C for 20 hours. This approach was used to directly synthesize a variety of quinoxalines in moderate to good yields.

Supporting Information

 
  • References and Notes

    • 1a Sakata G, Makino K, Kurasawa Y. Heterocycles 1988; 27: 2481
    • 1b Sato N In Comprehensive Heterocyclic Chemistry II . Katritzky AR, Rees CW, Scriven EF. Elsevier Science Ltd; Oxford: 1996. Chap. 6.03, 6
    • 1c Seitz LE, Suling WJ, Reynolds RC. J. Med. Chem. 2002; 45: 5604
    • 1d Gazit A, App H, McMahon G, Chen J, Levitzki A, Bohmer FD. J. Med. Chem. 1996; 39: 2170
    • 1e Lindsley CW, Zhao Z, Leister WH, Robinson RG, Barnett SF, Defeo-Jones D, Jones RE, Hartman GD, Huff JR, Huber HE, Duggan ME. Bioorg. Med. Chem. Lett. 2005; 15: 761
    • 2a Thomas KR. J, Marappan V, Jiann TL, Hao CC, Yu-ai T. Chem. Mater. 2005; 17: 1860
    • 2b Thomas KR. J, Lin JT, Tao YT, Chuen CH. J. Mater. Chem. 2002; 12: 3516
    • 3a Dailey S, Feast JW, Peace RJ, Sage IC, Till S, Wood EL. J. Mater. Chem. 2001; 11: 2238
    • 3b O’Brien D, Weaver MS, Lidzey DG, Bradley DD. C. Appl. Phys. Lett. 1996; 69: 881
  • 4 Sascha O, Rudiger F. Synlett 2004; 1509
    • 5a Crossley MJ, Johnston LA. Chem. Commun. 2002; 1122
    • 5b Brock ED, Lewis DM, Yousaf TI, Harper HH (Procter and Gamble Co.) WO9951688, 1999 ; Chem. Abstr. 1999, 131, 287743b.
    • 5c Sonawane ND, Rangnekar DW. J. Heterocycl. Chem. 2002; 39: 303
    • 5d Katoh A, Yoshida T Ohkanda J. Heterocycles 2000; 52: 911
    • 5e Hirayama T, Yamasaki S, Ameku H, Ishi-i T, Thiemann T, Mataka S. Dyes Pigm. 2005; 67: 105
    • 6a Dell A, William DH, Morris HR, Smith GA, Feeny J, Roberts GC. K. J. Am. Chem. Soc. 1975; 97: 2497
    • 6b Bhosale RS, Sarda SR, Andhapure SS, Jadhav WN, Bhusare SR, Pawar RP. Tetrahedron Lett. 2005; 46: 7183
    • 6c More SV, Sastry MN. V, Yao C.-F. Green Chem. 2006; 8: 91
    • 6d More SV, Sastry MN. V, Wang CC, Yao C.-F. Tetrahedron Lett. 2005; 46: 6345
    • 6e Vogel’s Textbook of Practical Organic Chemistry . Furniss BS, Hannaford AJ, Smith PW. G, Tatchell AR. Harlow; Longman: 1989. 5th ed. 1190
    • 6f Brown DJ In Chemistry of Heterocyclic Compounds, Quinoxalines Supplements II . Taylor EC, Wipf P. John Wiley and Sons; New Jersey: 2004
    • 7a Raw SA, Wilfred CD, Taylor RJ. K. Org. Biomol. Chem. 2004; 2: 788
    • 7b Kim SY, Park KH, Chung YK. Chem. Commun. 2005; 1321
    • 7c Meshram HM, Kumar GS, Ramesh P, Reddy BC. Tetrahedron Lett. 2010; 51: 2580
    • 7d Madhav B, Murthy SN, Reddy VP, Rao KR, Nageswar YV. D. Tetrahedron Lett. 2009; 50: 6025
    • 7e Wan J.-P, Gan S.-F, Wu J.-M, Pan Y. Green Chem. 2009; 11: 1633
  • 8 Wang W, Shen Y, Meng X, Zhao M, Chen Y, Chen B. Org. Lett. 2011; 13: 4514
  • 10 Chen Y, Li K, Zhao M, Li Y, Chen B. Tetrahedron Lett. 2013; 54: 1627
  • 11 Synthesis of 2-Phenylquinoxaline (4aa); Typical Procedure: 2-Iodoaniline (1a; 54.8 mg, 0.25 mmol), sodium azide (3; 19.5 mg, 0.3 mmol), CuI (4.8 mg, 0.025 mmol), K2CO3 (34.5 mg, 0.25 mmol), phenylacetaldehyde (2a; 58 μL, 0.5 mmol), DMEDA (3 μL, 0.025 mmol), and DMSO (1.0 mL) were added to a round-bottom flask equipped with stirrer, and the reaction mixture was heated to 80 °C for 20 h. After cooling to room temperature, the reaction mixture was added to water (2 mL), and extracted with EtOAc (3 × 10 mL). The combined organic phases were washed with brine (2 × 5 mL), dried over anhydrous MgSO4, and concentrated in vacuo. The residue was subjected to flash column chromatography (petroleum ether–EtOAc, 20:1) to afford the final product 4aa (75% yield) as a light-yellow solid (mp 63–65 °C). 1H NMR (300 MHz, CDCl3): δ = 9.33 (s, 1 H), 8.11–8.22 (m, 4 H), 7.74–7.88 (m, 2 H), 7.57–7.72 (m, 3 H). 13C NMR (75 MHz, CDCl3): δ = 152.0, 143.5, 142.5, 141.7, 136.9, 130.4, 130.3, 129.8, 129.7, 129.3, 129.3, 127.7. MS (ESI): m/z = 207 [M + H]+ .