Synlett 2013; 24(13): 1663-1666
DOI: 10.1055/s-0033-1339295
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis of a 4-Aryl-2-anilinopyrimidine Using a Germanium-Functionalised Non-Cross-Linked Polystyrene (NCPS) Support

Ratnasothy Srikaran
a   Department of Chemistry, University of Jaffna, Jaffna, Sri Lanka
,
Christos A. Kontorgiorgis
b   Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK   Fax: +44(20)75945841   Email: a.c.spivey@imperial.ac.uk
,
Sarah A. Warren
b   Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK   Fax: +44(20)75945841   Email: a.c.spivey@imperial.ac.uk
,
Federica Pisaneschi
b   Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK   Fax: +44(20)75945841   Email: a.c.spivey@imperial.ac.uk
,
Alan C. Spivey*
b   Department of Chemistry, South Kensington Campus, Imperial College, London, SW7 2AZ, UK   Fax: +44(20)75945841   Email: a.c.spivey@imperial.ac.uk
› Author Affiliations
Further Information

Publication History

Received: 03 April 2013

Accepted after revision: 30 May 2013

Publication Date:
28 June 2013 (online)


Abstract

The use of a germanium-functionalised non-cross-linked polystyrene (NCPS) support to aid the preparation of a 2-anilino-4-arylpyrimidine is described. This compound is a key intermediate en route to various IKK-2 and JNK inhibitors.

Supporting Information

 
  • References and Notes

  • 1 Cohen P. Nat. Cell Biol. 2002; 4: E127
  • 2 Kinase Drug Discovery . Ward RA, Goldberg F. RSC Publishing; Cambridge: 2011
    • 3a The 2-aminopyrimidine structural subunit is also found in many other classes of natural products and therapeutics including statins such as rosuvaststin (Crestor®) and reverse transcriptase inhibitors such as rilpivirine (TMC728, Edurant®), as well as in promising leads for regulating stem-cell growth, see for example: Wu X, Ding S, Ding Q, Gray NS, Schultz PG. J. Am. Chem. Soc. 2004; 126: 1590
    • 3b For additional references, see: Matloobi M, Kappe CO. J. Comb. Chem. 2007; 9: 275
  • 4 Zimmermann J, Buchdunger E, Mett H, Meyer T, Lydon NB. Bioorg. Med. Chem. Lett. 1997; 7: 187
  • 5 Capdeville R, Buchdunger E, Zimmermann J, Matter A. Nat. Rev. Drug Discov. 2002; 1: 493
  • 6 Lee J, Kim K.-H, Jeong S. Bioorg. Med. Chem. Lett. 2011; 21: 4203
  • 7 Bingham AH, Davenport RJ, Gowers L, Knight RL, Lowe C, Owen DA, Parry DM, Pitt WR. Bioorg. Med. Chem. Lett. 2004; 14: 409
  • 8 Alam M, Beevers RE, Ceska T, Davenport RJ, Dickson KM, Fortunato M, Gowers L, Haughan AF, James LA, Jones MW, Kinsella N, Lowe C, Meissner JW. G, Nicolas A.-L, Perry BG, Phillips DJ, Pitt WR, Platt A, Ratcliffe AJ, Sharpe A, Tait LJ. Bioorg. Med. Chem. Lett. 2007; 17: 3463
  • 9 Ember B, Kamenecka T, LoGrasso P. Biochemistry 2008; 47: 3076
  • 10 Humphries PS, Lafontaine JA, Agree CS, Alexander D, Chen P, Do Q.-QT, Li LY, Lunney EA, Rajapakse RJ, Siegel K, Timofeevski SL, Wang T, Wilhite DM. Bioorg. Med. Chem. Lett. 2009; 19: 2099
  • 11 Kamenecka T, Jiang R, Song X, Duckett D, Chen W, Ling YY, Habel J, Laughlin JD, Chambers J, Figuera-Losada M, Cameron MD, Lin L, Ruiz CH, LoGrasso PV. J. Med. Chem. 2010; 53: 419
  • 12 Satoh Y, Bhagwat SS. (Signal Pharmaceuticals, LLC, USA) US Patent US2004106634A1, 2004 , 161.
  • 13 Kois A, MacFarlane KJ, Satoh Y, Bhagwat SS, Parnes JS, Palanki MS. S, Erdman PE. (Signal Pharmaceuticals, Inc., USA) PCT Int. Patent WO2002046171A2, 2002 , 194.
  • 14 Kois A, MacFarlane KJ, Satoh Y, Bhagwat SS, Parnes JS, Palanki MS. S, Erdman PE. (Signal Pharmaceuticals, Inc., USA) PCT Int. Patent WO2002046170A2, 2002 , 199.
  • 15 Yoshida J.-I, Itami K. Chem. Rev. 2002; 102: 3693
  • 16 Spivey AC, Srikaran R, Diaper CM, Turner DJ. Org. Biomol. Chem. 2003; 1: 1638
  • 17 Bergbreiter DE, Tian J, Hongfa C. Chem. Rev. 2009; 109: 530
  • 18 Bergbreiter DE. Chem. Rev. 2002; 102: 3345
  • 19 Dickerson TJ, Reed NN, Janda KD. Chem. Rev. 2002; 102: 3325
  • 20 Toy PH, Janda KD. Acc. Chem. Res. 2000; 33: 546
  • 21 Gravert DJ, Janda KD. Chem. Rev. 1997; 97: 489
  • 22 Lukevics E, Pudova O In Chemistry of Organic Germanium, Tin and Lead Compounds . Vol. 2, Part 2. Rappoport Z. Wiley; Chichester: 2002: 1685-1714
  • 23 Spivey AC, Tseng C.-C, Hannah JP, Gripton CJ. G, de Fraine P, Parr NJ, Scicinski JJ. Chem. Commun. 2007; 2926
  • 24 Spivey AC, Tseng C.-C, Jones TC, Kohler AD, Ellames GJ. Org. Lett. 2009; 11: 4760
  • 25 Spivey AC, Diaper CM, Rudge AJ. Chem. Commun. 1999; 835
  • 26 Spivey AC, Diaper CM, Adams H, Rudge AJ. J. Org. Chem. 2000; 65: 5253
  • 27 Turner DJ, Anemian R, Mackie PR, Cupertino DC, Yeates SG, Turner ML, Spivey AC. Org. Biomol. Chem. 2007; 5: 1752
  • 28 Langle S, David-Quillot F, Balland A, Abarbri M, Duchêne A. J. Organomet. Chem. 2003; 671: 113
  • 29 Malagu K, Guerin P, Guillemin J.-C. Synlett 2002; 316
  • 30 Zayas HA, Bowyer MC, Gordon CP, Holdsworth CI, McCluskey A. Tetrahedron Lett. 2009; 50: 5894
  • 31 Srikaran R. PhD Dissertation. University of Sheffield; UK: 2002
  • 32 Breaux EJ, Zwikelmaier KE. J. Heterocycl. Chem. 1981; 18: 183
  • 33 Tanaka A, Motoyama Y, Takasugi H. Chem. Pharm. Bull. 1994; 42: 1828
  • 34 Procedure for Conversion of Germyl Copolymer 12 to 2-Anilino-4-arylpyrimidine 3: To a solution of enaminone germyl copolymer 12 (150 mg, ca. 0.12 mmol) and K2CO3 (104 mg, 0.75 mmol) in DMF (10 mL) was added 4-guanidinobenzoic acid methyl ester hydrochloride (13; 69 mg, 0.30 mmol). The resulting mixture was heated at 120 °C for 24 h. The solvent was removed in vacuo and the crude residue was dissolved in a minimum amount of CH2Cl2 and filtered through a short pad of Celite®. The filtrate was precipitated by dropwise addition into cold MeOH (3 ×) and collected by centrifugation. The resulting sticky pale yellow solid, copolymer 14 (150 mg) was dissolved in THF (15 mL) and recrystallized N-chlorosuccinimide (60 mg, 0.45 mmol) was added. The resulting solution was heated at 70 °C for 8 h. The solvent was removed in vacuo and the crude material was dissolved in minimum amount of CH2Cl2, the unwanted polymer precipitated by dropwise addition into cold MeOH and filtered off using a short pad of Celite®. The filtrate was concentrated in vacuo and the resulting pale yellow solid was purified by flash chromatography (petroleum ether–EtOAc, 7:3) to give 2-anilino-4-arylpyrimidine 3 as a white solid (30 mg, 74%); mp 228–229 °C. 1H NMR (400 MHz, CDCl3): δ = 1.60 (br s, 1 H), 3.85 (s, 3 H), 7.14 (d, J = 5.0 Hz, 1 H), 7.43 (d, J = 7.0 Hz, 2 H), 7.73 (d, J = 7.0 Hz, 2 H), 7.98 (app t, J = 7.0 Hz, 4 H), 8.44 (d, J = 5.0 Hz, 1 H). 13C NMR (100 MHz, DMSO-d 6): δ = 51.8, 109.0, 117.8, 121.8, 128.8, 129.1, 130.3, 135.2, 135.9, 145.2, 159.4, 159.7, 162.6, 166.0 ppm. IR (neat): 3320, 1700, 1532, 1434, 1316, 1177 cm–1. MS (ES+): m/z = 340/342 (35Cl/37Cl, MH+). HRMS: m/z calcd for C18H15ClN3O2 [M + H]+: 340.0853; found: 340.0870 (Δ = 5.0 ppm).