Synlett 2013; 24(9): 1105-1108
DOI: 10.1055/s-0033-1338933
letter
© Georg Thieme Verlag Stuttgart · New York

Diastereodivergent Vinylogous Mukaiyama Aldol Reaction

Dirk Landsberg
Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz Universität, Hannover, Schneiderberg 1 B, 30167 Hannover, Germany   Fax: +49(511)7623011   Email: Markus.Kalesse@oci.uni-hannover.de
,
Olaf Hartmann
Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz Universität, Hannover, Schneiderberg 1 B, 30167 Hannover, Germany   Fax: +49(511)7623011   Email: Markus.Kalesse@oci.uni-hannover.de
,
Ulrike Eggert
Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz Universität, Hannover, Schneiderberg 1 B, 30167 Hannover, Germany   Fax: +49(511)7623011   Email: Markus.Kalesse@oci.uni-hannover.de
,
Markus Kalesse*
Institute of Organic Chemistry and Center of Biomolecular Drug Research, Leibniz Universität, Hannover, Schneiderberg 1 B, 30167 Hannover, Germany   Fax: +49(511)7623011   Email: Markus.Kalesse@oci.uni-hannover.de
› Author Affiliations
Further Information

Publication History

Received: 03 April 2013

Accepted after revision: 15 April 2013

Publication Date:
29 April 2013 (online)


Abstract

The vinylogous Mukaiyama aldol reaction (VMAR) allows the rapid assembly of polyketide building blocks in complex natural product syntheses. Here we describe how different dia­stereomers can be obtained efficiently from commercially available Roche ester.

 
  • References and Notes

    • 1a Fuson RC. Chem. Rev. 1935; 16: 1
    • 1b Casiraghi G, Battistini L, Curti C, Rassu G, Zanardi F. Chem. Rev. 2011; 111: 3076
    • 2a Kalesse M. Top. Curr. Chem. 2005; 244: 43
    • 2b Denmark SE, Heemstra JR. Jr, Beutner GL. Angew. Chem. Int. Ed. 2005; 44: 4682
    • 3a Paterson I, Paquet T. Org. Lett. 2010; 12: 2158
    • 3b Paterson I, Findlay AD, Florence GJ. Tetrahedron 2007; 63: 5806
    • 3c Evans DA, Burch JD, Hu E, Jaeschke G. Tetrahedron 2008; 64: 4671
    • 3d Schäckel R, Hinkelmann B, Sasse F, Kalesse M. Angew. Chem. Int. Ed. 2010; 49: 1619
    • 3e Brodmann T, Lorenz M, Schäckel R, Simsek S, Kalesse M. Synlett 2009; 174
    • 3f Ehrlich G, Hassfeld J, Eggert U, Kalesse M. Chem. Eur. J. 2008; 14: 2232
    • 3g Liesener FP, Jannsen U, Kalesse M. Synthesis 2006; 2590
    • 3h Ehrlich G, Kalesse M. Synlett 2005; 655
    • 3i Schmauder A, Müller S, Maier ME. Tetrahedron 2008; 64: 6263
    • 3j Jiang X, Liu B, Lebreton S, De Brabander JK. J. Am. Chem. Soc. 2007; 129: 6386
    • 4a Hassfeld J, Kalesse M. Tetrahedron Lett. 2002; 43: 5093
    • 4b Christmann M, Kalesse M. Tetrahedron Lett. 2001; 42: 1269
  • 6 Stanton GR, Kauffman MC, Walsh PJ. Org. Lett. 2012; 14: 3368
  • 7 For the use of Cy2BCl in enol formation, see: Brown HC, Dhar RK, Bakshi RK, Pandiarajan PK, Singaram B. J. Am. Chem. Soc. 1989; 111: 3441
  • 8 Hoffmann RW, Weidmann U. Chem. Ber. 1985; 118: 3980
  • 9 Matsumori N, Kaneno D, Murata M, Nakamura H, Tachibana K. J. Org. Chem. 1999; 64: 866
  • 10 Nakamura R, Tanino K, Miyashita M. Org. Lett. 2003; 5: 3579
  • 11 Ishii Y, Nagumo S, Arai T, Akuzawa M, Kawahara N, Akita H. Tetrahedron 2006; 62: 716
  • 12 Lee JM, Helquist P, Wiest O. J. Am. Chem. Soc. 2012; 134: 14973
  • 13 Vinylogous Mukaiyama Aldol Reaction (VMAR); General Procedure: Aldehyde 2 (1 equiv) was dissolved in CH2Cl2–Et2O (9:1, 0.1 M) at –78 °C. The appropriate Lewis acid [and in the case of Zn, isopropanol (1.2 equiv)] was added neat and the mixture was stirred at –78 °C for 10 min. Neat TES-ketene acetal 4 (1.5 equiv) was added slowly and the resulting solution was stirred at –78 °C until the entire aldehyde was consumed (reaction analyzed by TLC). The reaction was quenched by addition of saturated aqueous NaHCO3 solution, extracted with CH2Cl2, and dried over MgSO4. Concentration in vacuo and silica gel column chromatography (EtOAc–hexanes, 20%) gave the desired isomeric mixture as a colorless oil. The isomers can be differentiated by using the 1H NMR signal for the olefinic β-position [δ = 7.00 ppm (dd) for 6; δ = 7.09 ppm (dd) for 11; δ = 6.79 ppm (dd) for 12]. 4,5-syn-5,6-anti VMAR 6: 1H NMR (400 MHz, CDCl3): δ = 7.25–7.21 (m, 2 H), 7.00 (dd, J = 15.8, 7.7 Hz, 1 H), 6.90–6.86 (m, 2 H), 5.82 (dd, J = 15.8, 1.3 Hz, 1 H), 4.43 (s, 2 H), 3.81 (s, 3 H), 3.72 (s, 3 H), 3.63 (dd, J = 9.2, 3.8 Hz, 1 H), 3.54 (d, J = 4.1 Hz, 1 H), 3.47 (dt, J = 6.9, 4.6 Hz, 2 H), 3.42 (dd, J = 9.2, 6.9 Hz, 1 H), 2.44 (dq, J = 12.7, 6.7 Hz, 1 H), 1.90 (dqd, J = 14.0, 7.0, 3.8 Hz, 1 H), 1.09 (d, J = 6.7 Hz, 3 H), 0.93 (d, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.2, 159.5, 152.8, 129.7, 129.5, 120.5, 114.0, 79.0, 74.7, 73.4, 55.4, 51.6, 40.2, 35.8, 14.5, 13.1. HRMS (ESI+): m/z [M + Na+] calcd for C18H26O5Na: 345.1678; found: 345.1675. 4,5-anti-5,6-anti VMAR 11: 1H NMR (400 MHz, CDCl3): δ = 7.25–7.20 (m, 2 H), 7.09 (dd, J = 15.9, 8.7 Hz, 1 H), 6.90–6.85 (m, 2 H), 5.84 (dd, J = 15.9, 0.9 Hz, 1 H), 4.43 (s, 2 H), 3.80 (s, 3 H), 3.72 (s, 3 H), 3.57 (dd, J = 9.2, 3.8 Hz, 1 H), 3.48–3.39 (m, 2 H), 2.54–2.44 (m, 1 H), 1.92–1.82 (m, 1 H), 1.14 (d, J = 6.9 Hz, 3 H), 0.83 (d, J = 6.9 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.1, 159.5, 150.7, 129.6, 129.6, 121.5, 114.0, 80.0, 75.6, 73.4, 55.4, 51.5, 40.1, 36.4, 17.3, 13.8. HRMS (ESI+): m/z [M + Na+] calcd for C18H26O5Na: 345.1678; found: 345.1676. 4,5-syn-5,6-syn VMAR 12: 1H NMR (400 MHz, CDCl3): δ = 7.25–7.20 (m, 2 H), 6.90–6.85 (m, 2 H), 6.79 (dd, J = 15.7, 9.3 Hz, 1 H), 5.85 (dd, J = 15.7, 0.8 Hz, 1 H), 4.44 (s, 2 H), 3.81 (s, 3 H), 3.72 (s, 3 H), 3.63 (dd, J = 9.1, 2.0 Hz, 1 H), 3.53 (dd, J = 9.0, 3.9 Hz, 1 H), 3.47 (dd, J = 9.0, 4.8 Hz, 1 H), 2.51–2.40 (m, 1 H), 1.83–1.74 (m, 1 H), 1.15 (d, J = 6.6 Hz, 3 H), 0.95 (d, J = 7.0 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 167.1, 159.4, 151.2, 129.6, 129.4, 121.0, 114.0, 77.1, 75.4, 73.3, 55.4, 51.7, 41.0, 36.0, 16.9, 9.9. HRMS (ESI+): m/z [M + Na+] calcd for C18H26O5Na: 345.1678; found: 345.1675.