Synlett 2013; 24(8): 967-972
DOI: 10.1055/s-0033-1338438
letter
© Georg Thieme Verlag Stuttgart · New York

A Domino Palladium Catalysis: Synthesis of 7-Methyl-5H-dibenzo[a,c][7] annulen-5-ones

Jonnada Krishna
Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram – 502 205, Medak District, Andhra Pradesh, India   Fax: +91(40)23016032   Email: gvsatya@iith.ac.in
,
Alavala Gopi Krishna Reddy
Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram – 502 205, Medak District, Andhra Pradesh, India   Fax: +91(40)23016032   Email: gvsatya@iith.ac.in
,
Gedu Satyanarayana*
Indian Institute of Technology (IIT) Hyderabad, Ordnance Factory Estate Campus, Yeddumailaram – 502 205, Medak District, Andhra Pradesh, India   Fax: +91(40)23016032   Email: gvsatya@iith.ac.in
› Author Affiliations
Further Information

Publication History

Received: 18 January 2013

Accepted after revision: 03 April 2013

Publication Date:
11 April 2013 (online)


This paper is affectionately dedicated to Professor Kavirayani R. Prasad, Department of Organic Chemistry, Indian Institute of Science, Bangalore, India

Abstract

A domino Pd-catalyzed reaction of 1-(2-bromophenyl)ethanones for the synthesis of novel 7-methyl-5H-dibenzo[a,c][7]annulen-5-ones, a carbon core structure present in colchicinoid natural products, is presented. The reaction is proposed to proceed via intermolecular homobiaryl coupling and intramolecular aldol condensation.

Supporting Information

Primary Data

 
  • References and Notes

  • 1 Tietze LF. Chem. Rev. 1996; 96: 115

    • For reviews on C–H activations, see:
    • 2a Shibasaki M, Vogl EM, Ohshima T. Adv. Synth. Catal. 2004; 346: 1533
    • 2b Alberico D, Scott ME, Lautens M. Chem. Rev. 2007; 107: 174
    • 2c D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095
    • 2d Minatti A, Muñiz K. Chem. Soc. Rev. 2007; 36: 1142
    • 2e Catellani M, Motti E, Della Ca’ N. Acc. Chem. Res. 2008; 41: 1512
    • 2f Daugulis O, Do H.-Q, Shabashov D. Acc. Chem. Res. 2009; 42: 1074
    • 2g Chen X, Engle KM, Wang D.-H, Yu J.-Q. Angew. Chem. Int. Ed. 2009; 48: 5094 ; Angew. Chem. 2009, 121, 5196
    • 2h Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412 ; Angew. Chem. 2009, 121, 9576
    • 2i Xu L.-M, Li B.-J, Yang Z, Shi Z.-J. Chem. Soc. Rev. 2010; 39: 712
    • 2j Sehnal P, Taylor RJ. K, Fairlamb IJ. S. Chem. Rev. 2010; 110: 824
    • 2k Lyons TW, Sanford MS. Chem. Rev. 2010; 110: 1147
    • 2l Bras JL, Muzart J. Chem. Rev. 2011; 111: 1170
    • 2m Ackermann L. Chem. Rev. 2011; 111: 1315

      For recent Pd-catalyzed domino transformations, see:
    • 3a Thirunavukkarasu VS, Parthasarathy K, Cheng C.-H. Angew. Chem. Int. Ed. 2008; 47: 9462 ; Angew. Chem. 2008, 120, 9604
    • 3b Cvengroš J, Schütte J, Schlörer N, Neudörfl J, Schmalz H.-G. Angew. Chem. Int. Ed. 2009; 48: 6148 ; Angew. Chem. 2009, 121, 6264
    • 3c Hu Y, Yu C, Ren D, Hu Q, Zhang L, Cheng D. Angew. Chem. Int. Ed. 2009; 48: 5448 ; Angew. Chem. 2009, 121, 5556
    • 3d Levi ZU, Tilley TD. J. Am. Chem. Soc. 2009; 131: 2796
    • 3e Tietze LF, Düfert A, Lotz F, Sölter L, Oum K, Lenzer T, Beck T, Herbst-Irmer R. J. Am. Chem. Soc. 2009; 131: 17879
    • 3f Tietze LF, Redert T, Bell HP, Hellkamp S, Levy LM. Chem. Eur. J. 2008; 14: 2527
    • 3g Tietze LF, Düfert MA, Hungerland T, Oum K, Lenzer T. Chem. Eur. J. 2011; 17: 8452
    • 3h Satyanarayana G, Maichle-Mössmer C, Maier ME. Chem. Commun. 2009; 1571
    • 3i Wang S, Xie K, Tan Z, An X, Zhou X, Guo C.-C, Peng Z. Chem. Commun. 2009; 6469
    • 3j Li R.-J, Pi S.-F, Liang Y, Wang Z.-Q, Song R.-J, Chen G.-X, Li J.-H. Chem. Commun. 2010; 46: 8183
    • 3k Chen X, Wang H, Jin X, Feng J, Wang Y, Lu P. Chem. Commun. 2011; 47: 2628
    • 3l Bryan CS, Lautens M. Org. Lett. 2008; 10: 4633
    • 3m Jana R, Chatterjee I, Samanta S, Ray JK. Org. Lett. 2008; 10: 4795
    • 3n Luo Y, Pan X, Wu J. Org. Lett. 2011; 13: 1150
    • 3o Motti E, Della Ca’ N, Xu D, Piersimoni A, Bedogni E, Zhou Z.-M, Catellani M. Org. Lett. 2012; 14: 5792
    • 3p Piou T, Neuville L, Zhu J. Angew. Chem. Int. Ed. 2012; 51: 11561 ; Angew. Chem. 2012, 124, 11729
    • 3q Hashmi AS. K, Ghanbari M, Rudolph M, Rominger F. Chem. Eur. J. 2012; 18: 8113
    • 3r Hashmi AS. K, Lothschütz C, Döpp R, Ackermann M, Becker JD. B, Rudolph M, Scholz C, Rominger F. Adv. Synth. Catal. 2012; 354: 133
    • 3s Hashmi AS. K, Lothschütz C, Döpp R, Rudolph M, Ramamurthi TD, Rominger F. Angew. Chem. Int. Ed. 2009; 48: 8243 ; Angew. Chem. 2009, 121, 8392
  • 4 For a review of palladacyclces, see: Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
    • 5a Gandeepan P, Parthasarathy K, Cheng C.-H. J. Am. Chem. Soc. 2010; 132: 8569
    • 5b Mousseau JJ, Vallée F, Lorion MM, Charette AB. J. Am. Chem. Soc. 2010; 132: 14412
    • 5c Zhang H.-j, Wei J, Zhao F, Liang Y, Wang Z, Xi Z. Chem. Commun. 2011; 46: 7439
    • 5d Furuta T, Kitamura Y, Hashimoto A, Fujii S, Tanaka K, Kan T. Org. Lett. 2007; 9: 183
    • 5e Wang G.-W, Yuan T.-T, Li D.-D. Angew. Chem. Int. Ed. 2011; 50: 1380 ; Angew. Chem. 2011, 123, 1416
    • 5f Satyanarayana G, Maier ME. Org. Lett. 2008; 10: 2361
    • 5g Satyanarayana G, Maier ME. Eur. J. Org. Chem. 2008; 5543
    • 5h Mahendar L, Krishna J, Reddy AG. K, Ramulu BV, Satyanarayana G. Org. Lett. 2012; 14: 628
    • 6a Reddy AG. K, Krishna J, Satyanarayana G. Synlett 2011; 1756
    • 6b Krishna J, Reddy AG. K, Mahendar L, Ramulu BV. Synlett 2012; 23: 375
    • 6c Suchand B, Krishna J, Ramulu BV, Dibyendu D, Reddy AG. K, Mahendar L. Tetrahedron Lett. 2012; 53: 3861
    • 6d Reddy AG. K, Satyanarayana G. Tetrahedron 2012; 68: 8003
    • 6e Reddy AG. K, Krishna J, Satyanarayana G. Tetrahedron Lett. 2012; 53: 5635
    • 7a Chia Y.-C, Yeh H.-C, Yeh Y.-T, Chen C.-Y. Chem. Nat. Compd. 2011; 47: 220
    • 7b Chen C.-Y, Yang W.-L, Hsui Y.-R. Nat. Prod. Res. 2010; 24: 423
    • 7c Nakagawa-Goto K, Jung MK, Hamel E, Wu C.-C, Bastow KF, Brossi A, Ohta S, Lee K.-H. Heterocycles 2005; 65: 541
  • 8 Choi YL, Yu C.-M, Kim BT, Heo J.-N. J. Org. Chem. 2009; 74: 3948
  • 9 Lablanc M, Fagnou K. Org. Lett. 2005; 7: 2849
  • 10 Takada T, Arisawa M, Gyoten M, Hamada R, Tohma H, Kita Y. J. Org. Chem. 1999; 63: 7698
  • 11 Djurdjevic S, Green RR. Org. Lett. 2007; 9: 5505
    • 12a Weitzberg M, Abu-Shakra E, Azeb A, Aizenshtat Z, Blum J. J. Org. Chem. 1987; 52: 529
    • 12b Ghera E, Gaoni Y, Shoua S. J. Am. Chem. Soc. 1976; 98: 3627
    • 12c Boyé O, Brossi A. Can. J. Chem. 1992; 70: 1237
    • 12d Rapoport H, Williams AR, Cisney ME. J. Am. Chem. Soc. 1951; 73: 1414
    • 12e Seganish WM, DeShong P. Org. Lett. 2006; 8: 3951
    • 12f Besong G, Billen D, Dager I, Kocienski P, Sliwinski E, Tai LR, Boyle FT. Tetrahedron 2008; 64: 4700
    • 12g Hackelöer K, Waldvogel SR. Tetrahedron Lett. 2012; 53: 1579
  • 13 Crystal data for 3g: CCDC 910650.
    • 14a Willis MC, Taylor D, Gillmore AT. Org. Lett. 2004; 6: 4755
    • 14b Carril M, SanMartin R, Domínguez E, Tellitu I. Tetrahedron 2007; 63: 690
    • 14c Palucki M, Buchwald SL. J. Am. Chem. Soc. 1997; 119: 11108
    • 14d Ahman J, Wolfe PJ, Troutman MV, Palucki M, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 1918
    • 14e Kawatsura M, John FJ. J. Am. Chem. Soc. 1999; 121: 1473
    • 14f Fox JM, Huang X, Chieffi A, Buchwald SL. J. Am. Chem. Soc. 2000; 122: 1360
    • 14g Willis MC, Taylor D, Gillmore AT. Tetrahedron 2006; 62: 11513

      For reviews of intermediate palladium species with higher oxidation states, see:
    • 15a Muñiz K. Angew. Chem. Int. Ed. 2009; 48: 9412 ; Angew. Chem. 2009, 121, 9576
    • 15b Desai LV, Malik HA, Sanford MS. Org. Lett. 2006; 8: 1141
    • 15c Xu L.-M, Li B.-J, Yang Z, Shi Z.-J. Chem. Soc. Rev. 2010; 39: 712
    • 15d Canty AJ. Platinum Metals Rev. 1993; 37: 2
    • 16a Quan LG, Gevorgyan V, Yamamoto Y. J. Am. Chem. Soc. 1999; 121: 3545
    • 16b Solé D, Vallverdú L, Solans X, Font-Bardía M, Bonjoch J. J. Am. Chem. Soc. 2003; 125: 1587
    • 16c Zhao Y.-B, Mariampillai B, Candito DA, Laleu B, Li M, Lautens M. Angew. Chem. Int. Ed. 2009; 48: 1849; Angew. Chem. 2009, 121, 1881
    • 16d Solé D, Serrano O. Angew. Chem. Int. Ed. 2007; 46: 7270 ; Angew. Chem. 2007, 119, 7408
  • 17 General Procedure-1 for the Pd-Mediated Cyclization (GP-1) In an oven-dried Schlenk tube under nitrogen atmosphere were added ortho-bromoacetophenone 1ag (100–150 mg, 0.30–0.58 mmol), Pd(OAc)2 (2 mol%), Xantphos (4 mol%), and K3PO4 (0.60–1.16 mmol) followed by addition of dry DMF (2 mL). The resulted reaction mixture was stirred at 150 °C for 0.75–2 h. Progress of the reaction was monitored by TLC until the reaction was completed. The reaction mixture was then quenched with sat. aq NH4Cl, and the aqueous layer was extracted with EtOAC (3 × 20 mL). The combined organic layers were dried (Na2SO4) and concentrated in vacuo. The crude product 3ag was purified by column chromatography on silica gel using PE–EtOAc as eluent. Representative Analytical Data
    7-Methyl-5H-dibenzo[a,c][7]annulen-5-one (3a)
    Yield: 25 mg, 45%; viscous liquid. IR (MIR-ATR, 4000–600 cm–1): νmax = 3062, 2957, 2853, 1652, 1593, 1439, 1377, 1356, 1307, 1250, 1121, 1003, 850, 771, 735, 621 cm–1. 1H NMR (400 MHz, CDCl3): δ = 7.79 (dd, 2 H, J = 7.6, 5.3 Hz, ArH), 7.74 (m, 2 H, ArH), 7.63 (ddd, 1 H, J = 8.7, 7.4, 1.3 Hz, ArH), 7.53 (dd, 1 H, J = 7.7, 7.6 Hz, ArH), 7.48 (2 H, J = Hz, ArH), 6.62 (s, 1 H, ArH), 2.44 (s, 3 H, CH=CCH 3). 13C NMR (100 MHz, CDCl3): δ = 194.0 (s, ArC=O), 144.8 (s, CH=CCH3), 142.0 (s, ArC), 137.5 (s, ArC), 137.3 (s, ArC), 135.7 (s, ArC), 133.2 (d, ArCH), 131.9 (d, CH=CCH3), 131.2 (d, ArCH), 130.8 (d, ArCH), 128.6 (d, ArCH), 128.1 (d, ArCH), 127.8 (d, ArCH), 127.3 (d, ArCH), 127.1 (d, ArCH), 24.4 (q, CH=CCH 3). HRMS (ESI+): m/z calcd for [C32H25O2]+ = [2 (M + H)]+: 441.1849; found: 441.1836. 3,9-Dimethoxy-7-methyl-5H-dibenzo[a,c][7]annulen-5-one (3c) Yield: 31 mg, 50%; white solid; mp 125–127 °C. IR (MIR-ATR, 4000–600 cm–1): νmax = 3001, 2934, 2837, 1643, 1603, 1571, 1484, 1408, 1337, 1281, 1240, 1174, 1039, 814, 753, 722, 614 cm–1. 1H NMR (400 MHz CDCl3): δ = 7.69 (d, J = 8.9 Hz, ArH), 7.66 (d, J = 8.9 Hz, ArH), 7.28 (d, 1 H, J = 2.9 Hz, ArH), 7.20 (d, 1 H, J = 2.8 Hz, ArH), 7.18 (dd, 1 H, J = 8.9, 2.9 Hz, ArH), 7.04 (dd, 1 H, J = 8.9, 2.8 Hz, ArH), 6.61 (d, 1 H, J = 0.9 Hz, ArH), 3.89 (s, 3 H, ArOCH3), 3.89 (s, 3 H, ArOCH3), 2.43 (d, 3 H, J = 0.9 Hz, CH=CCH 3). 13C NMR (100 MHz, CDCl3): δ = 193.6 (s, ArC=O), 159.0 (s, ArC), 158.4 (s, ArC), 144.8 (s, CH=CCH3), 142.3 (s, ArC), 136.3 (s, ArC), 132.9 (d, CH=CCH3),132.8 (d, ArCH), 131.3 (d, ArCH), 130.5 (s, ArC), 130.4 (s, ArC), 119.4 (d, ArCH), 114.5 (d, ArCH), 112.2 (d, ArCH), 109.7 (d, ArCH), 55.6 (q, ArOCH3), 55.4 (q, ArOCH3), 24.6 (q, CH=CCH3). HRMS (ESI+): m/z calcd for [C18H17O3]+ = [M + H]+: 281.1172; found: 281.1161.