Synlett 2013; 24(8): 951-954
DOI: 10.1055/s-0032-1318481
letter
© Georg Thieme Verlag Stuttgart · New York

Rediscovering the Double Friedel–Crafts Acylation: An Expedient Entry to Phenanthrene-9,10-diones

Nicoletta Crosta
a   Institute of Organic Chemistry (IOC), Karlsruher Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, Geb. 30.42, 76131 Karlsruhe, Germany   Fax: +49(721)60848581   Email: kye.masters@kit.edu   Email: stefan.braese@kit.edu
,
Sebastian Müller
a   Institute of Organic Chemistry (IOC), Karlsruher Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, Geb. 30.42, 76131 Karlsruhe, Germany   Fax: +49(721)60848581   Email: kye.masters@kit.edu   Email: stefan.braese@kit.edu
,
Dietmar Gradl
b   Zoological Institute, Cell and Developmental Biology, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
,
Kye-Simeon Masters*
a   Institute of Organic Chemistry (IOC), Karlsruher Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, Geb. 30.42, 76131 Karlsruhe, Germany   Fax: +49(721)60848581   Email: kye.masters@kit.edu   Email: stefan.braese@kit.edu
c   School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
,
Stefan Bräse*
a   Institute of Organic Chemistry (IOC), Karlsruher Institute of Technology (KIT), Fritz-Haber-Weg 6, Campus Süd, Geb. 30.42, 76131 Karlsruhe, Germany   Fax: +49(721)60848581   Email: kye.masters@kit.edu   Email: stefan.braese@kit.edu
› Author Affiliations
Further Information

Publication History

Received: 19 January 2013

Accepted after revision: 26 February 2013

Publication Date:
05 April 2013 (online)


Abstract

The double Friedel–Crafts acylation of readily accessible biaryls with oxalyl chloride delivers the respective phenanthrene-9,10-diones, providing an alternative to the traditional methods, which require harsh oxidizing conditions and multistep sequences. This simple method allows the synthesis of various symmetrical and non-symmetrical targets, and is even effective for the synthesis of the parent ring system from (unactivated) biphenyl.

 
  • References and Notes

  • 1 Liebermann C. Chem. Ber. 1911; 44: 1453
    • 2a Gould SJ, Melville CR, Chen J. Tetrahedron 1997; 33: 4561
    • 2b Sato Y, Kohnert R, Gould SJ. Tetrahedron Lett. 1986; 27: 143
    • 2c Takagi M, Yamazaki H, Okada T, Takeda U, Sasaki T, Sezaki M, Miyaji S, Kojima M. Jpn. Patent JP 62307359, 1987 ; Chem. Abstr. 1987, 107, 76091d
    • 2d Takagi M, Shimizu T, Okada T, Takeda U, Sasaki T, Miyado S, Shomura T, Sezaki M, Kojima M. Meiji Seika Kenkyu Nenpo 1985; 32 ; Chem. Abstr. 1985, 106, 152652j
    • 2e Chu M, Mierzwa R, Truumees I, King A, Patel M, Berrie R, Hart A, Butkiewicz N, DasMahapatra B, Chan T.-M, Puar MS. Tetrahedron Lett. 1996; 37: 7229
    • 2f Lepourcelet M, Chen YN, France DS, Wang H, Crews F, Petersen F, Bruseo C, Wood AW, Shivdasani RA. Cancer Cell 2004; 5: 91
    • 3a Barker N, Clevers H. Nature Rev. Drug Discov. 2006; 5: 997
    • 3b Huang AS, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. Nature (London) 2009; 461: 614

      Murrayquinone analogues:
    • 4a Johnson BC, Polonsky J, Cohen P, Lederer E. Nature (London) 1963; 199: 285
    • 4b Cresp TM, Giles CF, Sargent MV. J. Chem. Soc., Chem. Commun. 1974; 11
    • 4c Jokela R, Lounasmaa M. Planta Med. 1997; 63: 85
    • 4d Krone B, Hinrichs H, Zeeck A. J. Antibiotics 1981; 23: 1538
    • 4e Ewersmeyer-Wenk B, Zähner H, Krone B, Zeeck A. J. Antibiotics 1981; 34: 1531
    • 4f Krivoshchekova OE, Stepanenko LS, Mishshenko NP, Denisenko VA, Maksimov OB. Khim. Prir. Soedin. 1983; 283
    • 4g De Pava A, Nasini G, De Pava OV. Phytochemistry 1991; 30: 2729
    • 4h Tene M, Tane P, Tamokou Jde D, Kuiate J.-R, Connolly JD. Phytochem. Lett. 2008; 1: 120
    • 4i Zhang J, Li L, Xiao YQ, Li W, Yin XJ, Tian GF, Chen DD, Wang Y. Chin. Chem. Lett. 2010; 21: 816
    • 5a Gosselin F, Lau S, Nadeau C, Trinh T, O’Shea PD, Davies IW. J. Org. Chem. 2009; 74: 7790
    • 5b Pyle AM, Rehmann JP, Meshoyrer R, Kumar CV, Turro NJ, Barton JK. J. Am. Chem. Soc. 1989; 111: 3051
    • 5c Sitlani A, Barton JK. Biochemistry 1994; 33: 12100
    • 5d Sitlani A, Long EC, Pyle AM, Barton JK. J. Am. Chem. Soc. 1992; 114: 2303
    • 5e Fitzsimons MP, Barton JK. J. Am. Chem. Soc. 1997; 119: 3379
    • 6a Echavarren AM, Porcel S In Science of Synthesis . Vol. 28. Danheiser RL, Giesbeck AG. Thieme Verlag; Stuttgart: 2006: 507 ; and references therein
    • 6b von Anschütz R, Schultz G. Justus Liebigs Ann. Chem. 1879; 196: 32
    • 6c Oyster L, Adkins H. J. Am. Chem. Soc. 1921; 43: 208
    • 6d Mayer F. Chem. Ber. 1912; 45: 1105
    • 6e Mohr B, Enkelmann V, Wegner G. J. Org. Chem. 1994; 59: 635
    • 6f Tamarkin D, Rabinovitz M. J. Org. Chem. 1987; 52: 3472
    • 6g Limanto J, Dorner BT, Hartner FW, Tan L. Org. Process Res. Dev. 2008; 12: 1269
    • 6h Yoshikawa N, Doyle A, Tan L, Murry JA, Akao A, Kawasaki M, Sato K. Org. Lett. 2007; 9: 4103
    • 6i For an innovative new approach, see: Trosien S, Waldvogel SR. Org. Lett. 2012; 14: 2976
  • 7 Yamamoto Y, Suzuki R, Hattori K, Nishiyama H. Synlett 2006; 1027
  • 8 Jensen FR, Goldman G. Friedel-Crafts and Related Reactions . Vol. III. Olah G. Chap. XXXVI Wiley-Interscience; New York: 1964
  • 9 Campbell N, Scott AH. J. Chem. Soc. C 1966; 1050
  • 10 Carey SA, Sundberg RJ. Advanced Organic Chemistry . 3rd Ed. Plenum Press; New York: 1990: Chap. 11
  • 11 Roberts RM. G, Sardi AR. Tetrahedron 1983; 39: 137
  • 12 For a full evaluation of the biological activity of selected phenanthrenediones, see: Halbedl S, Kratzer M.-C, Rahm K, Crosta N, Masters K.-S, Bräse S, Gradl D. FEBS Lett. 2013; 587: 522
    • 13a Rodriguez CE, Fukuto JM, Taguchi K, Froines J, Cho AK. Chemico-Biolog. Interact. 2005; 155: 97
    • 13b Wang Q, Dubé D, Friesen RW, LeRiche TG, Bateman KP, Trimble L, Sanghara J, Pollex R, Ramachandran C, Gresser MJ, Huang Z. Biochemistry 2004; 43: 4294
    • 13c Urbanek RA, Suchard SJ, Steelman GB, Knappenberger KS, Sygowski LA. J. Med. Chem. 2001; 44: 1777
    • 13d Shimada H, Oginuma M, Hara A, Imamura Y. Chem. Res. Toxicol. 2004; 17: 1145
  • 14 Veale CA, Chapdelaine MJ, Silver SL, Lowry A. J. Am. Chem. Soc. 1934; 56: 2429
  • 15 Typical Procedure: 3,3′-Dimethoxybiphenyl (100 mg, 0.47 mmol) was added to a solution of oxalyl chloride (0.47 mmol) in CH2Cl2 (7 mL). Anhyd AlCl3 (1,4 mmol) was added in one portion and the resulting solution became black. It was stirred at r.t. for 24 h. Then the reaction mixture was poured into a mixture of H2O (7 mL)/6 N HCl (3 mL), stirred for 15 min and then extracted with CH2Cl2 (2 ×). Recombined organic layers were dried (Na2SO4) and concentrated. Thereafter the residue was purified by silica gel chromatography (petroleum ether–EtOAc, 3:2) to afford 23b as a yellow-orange powder (37%); mp 132 °C. 1H NMR (400 MHz, CDCl3): δ = 7.71 (d, J = 8.0 Hz, 1 H), 7.45 (dd, J = 8.0, 8.0 Hz, 1 H), 7.30 (m, 2 H), 7.20 (dd, J = 8.0, 1.3 Hz, 1 H), 7.0 (dd, J = 8.0, 1.3 Hz, 1 H), 3.95 (s, 3 H), 3.85 (s, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 194.5 (2 × C), 160.0 (2 × C), 158.7 (C), 145.6 (C), 142.0 (C), 131.0 (CH), 129.9 (CH), 129.1 (C), 119.7 (CH), 119.3 (CH), 113.2 (CH), 110.4 (CH), 55.98, 55.43.