Synlett 2013; 24(6): 686-696
DOI: 10.1055/s-0032-1318157
account
© Georg Thieme Verlag Stuttgart · New York

Mono- and Oligocyclic Aromatic Ynes and Diynes as Building Blocks to Approach Larger Acenes, Heteroacenes, and Twistacenes

Junbo Li
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore   Fax: +6567909081   Email: qczhang@ntu.edu.sg
,
Qichun Zhang*
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore   Fax: +6567909081   Email: qczhang@ntu.edu.sg
› Author Affiliations
Further Information

Publication History

Received: 12 December 2012

Accepted after revision: 14 January 2013

Publication Date:
11 March 2013 (online)


Abstract

Although larger acenes or heteroacenes are expected to exhibit smaller band gaps, which may provide better functionality in organic optoelectronics, their lower solubility and poor stability make their syntheses more challenging. In this account, we review our recent progress in constructing larger acenes, heteroacenes, and twistacenes using different mono- and oligocyclic aromatic ynes and diynes as building blocks.

1 Overview

2 Mono- and Oligocyclic Aromatic Ynes

2.1 Benzynes

2.2 Naphthalynes

2.3 Anthracynes

2.4 Tetracyne

3 Mono- and Oligocyclic Aromatic Diynes

3.1 One-Step Diyne Precursors

3.2 Step-by-Step Diyne Precursors

4 An Expansion Method To Approach Oligoacenes

5 Conclusion and Outlook

 
  • References

    • 1a Anthony JE. Chem. Rev. 2006; 106: 5028
    • 1b Wolak MA, Delcamp J, Landis CA, Lane PA, Anthony J, Kafafi Z. Adv. Funct. Mater. 2006; 16: 1943
    • 1c Xiao J, Yang B, Wong JI, Liu Y, Wei F, Tan KJ, Teng X, Wu Y, Huang L, Kloc C, Boey F, Ma J, Zhang H, Yang H, Zhang Q. Org. Lett. 2011; 13: 3004
    • 1d Xiao J, Yang H, Yin Z, Guo J, Boey F, Zhang H, Zhang Q. J. Mater. Chem. 2011; 21: 1423
    • 1e Yang B, Xiao J, Wong JI, Guo J, Wu Y, Ong L, Lao LL, Boey F, Zhang H, Zhang Q. J. Phys. Chem. C 2011; 115: 7924
    • 1f Xiao J, Yin Z, Yang B, Liu Y, Ji L, Guo J, Huang L, Liu X, Yan Q, Zhang H, Zhang Q. Nanoscale 2011; 3: 4720
    • 1g Lee YH, Wu TC, Liaw CW, Wen TC, Guo TF, Wu YT. J. Mater. Chem. 2012; 22: 11032
    • 2a Bendikov M, Wudl F. Chem. Rev. 2004; 104: 4891
    • 2b Anthony JE. Angew. Chem. Int. Ed. 2008; 47: 452
    • 2c Miao Q. Synlett 2012; 23: 326
    • 2d Tang ML, Reichardt AD, Miyaki N, Stoltenberg RM, Bao ZN. J. Am. Chem. Soc. 2008; 130: 6064
    • 2e Gundlach DJ, Royer JE, Park SK, Subramanian S, Jurchescu OD, Hamadani BH, Moad AJ, Kline RJ, Teague LC, Kirillov O, Richter CA, Kushmerick JG, Richter LJ, Parkin SR, Jackson TN, Anthony JE. Nat. Mater. 2008; 7: 216
    • 3a Okamoto T, Suzuki T, Tanaka H, Hashizume D, Matsuo Y. Chem. Asian J. 2012; 7: 105
    • 3b Jiang Y, Okamoto T, Becerril HA, Hong S, Tang ML, Mayer AC, Parmer JE, McGehee MD, Bao ZN. Macromolecules 2010; 43: 6361
    • 4a Gao XF, Hodgson JL, Jiang D, Zhang SB, Nagase S, Miller GP, Chen ZF. Org. Lett. 2011; 13: 3316
    • 4b Houk KN, Lee PS, Nenel M. J. Org. Chem. 2001; 66: 5517
    • 4c Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F. J. Am. Chem. Soc. 2004; 126: 7416
    • 4d Jiang D, Dai S. J. Phys. Chem. A 2008; 112: 332
    • 4e Hajgat B, Huzak M, Deleuze MS. J. Phys. Chem. A 2011; 115: 9282
    • 5a Qu HM, Chi CY. Curr. Org. Chem. 2010; 14: 2070
    • 5b Zade SS, Bendikov M. J. Phys. Org. Chem. 2012; 25: 452
    • 6a Mallouli A, Lepage Y. Synthesis 1980; 689
    • 6b Bowles DM, Anthony JE. Org. Lett. 2000; 2: 85
    • 6c Lin C, Lin KH, Pal B, Tsouz L. Chem. Commun. 2009; 803
    • 6d Takshashi T, Li S, Huang W, Kong F, Nakajima K, Shen B, Ohe T, Kanno KI. J. Org. Chem. 2006; 71: 7967
    • 7a Yamamoto K, Katagiri H, Tairabune H, Yamaguchi Y, Pu YJ, Nakayama KI, Ohba Y. Tetrahedron Lett. 2012; 53: 1786
    • 7b Du CY, Guo YL, Liu YQ, Qiu WF, Zhang HJ, Gao XK, Liu Y, Qi T, Lu K, Yu G. Chem. Mater. 2008; 20: 4188
    • 7c Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, Sato F, Tokito S. J. Am. Chem. Soc. 2004; 126: 8138
    • 7d Patney HK. J. Org. Chem. 1988; 53: 6106
    • 8a Valiyev F, Hu WS, Chen HY, Kuo MY, Chao I, Tao YT. Chem. Mater. 2007; 19: 3018
    • 8b Payne MM, Parkin SR, Anthony JE. J. Am. Chem. Soc. 2005; 127: 8028
    • 8c Subramanian S, Park SK, Parkin SR, Podzorov V, Jackson TN, Anthony JE. J. Am. Chem. Soc. 2008; 130: 2706
    • 8d Palayangoda SS, Mondal R, Shah BK, Neckers DC. J. Org. Chem. 2007; 72: 6584
    • 9a Rainbolt JE, Miller GP. J. Org. Chem. 2007; 72: 3020
    • 9b Horn T, Wegener S, Mullen K. Macromol. Chem. Phys. 1995; 196: 2463
    • 10a Chun D, Cheng Y, Wudl F. Angew. Chem. Int. Ed. 2008; 47: 8380
    • 10b Kaur I, Jia WL, Kropreski RP, Selvarasah S, Dokmeci MR, Pramanik C, Mcgruer NE, Miller GP. J. Am. Chem. Soc. 2008; 130: 16274
    • 11a Qu HM, Chi CY. Org. Lett. 2010; 12: 3360
    • 11b Purushothaman B, Bruzek M, Parkin SR, Miller AF, Anthony JE. Angew. Chem. Int. Ed. 2011; 50: 7013
    • 12a Kaur I, Stein NN, Kropreski RP, Miller GP. J. Am. Chem. Soc. 2009; 131: 3424
    • 12b Kaur I, Jazdzyk M, Stein NN, Prusevich P, Miller GP. J. Am. Chem. Soc. 2010; 132: 1261
    • 13a Maliakal A, Raghavachari K, Katz H, Chandross E, Siegrist T. Chem. Mater. 2004; 16: 4980
    • 13b See also ref. 8b.
    • 13c Zade SS, Bendikov M. Angew. Chem. Int. Ed. 2010; 49: 4012
    • 13d Purushothaman B, Parkin SR, Anthony JE. Org. Lett. 2010; 12: 2060

      For reviews, see:
    • 14a Wenk HH, Winkler M, Sander W. Angew. Chem. Int. Ed. 2003; 42: 502
    • 14b Pellissier H, Santelli M. Tetrahedron 2003; 59: 701
    • 14c Bhunia A, Yetra SR, Biju AT. Chem. Soc. Rev. 2012; 41: 3140
    • 16a Xiao JC, Duong HM, Liu Y, Shi WX, Ji L, Li G, Li SZ, Liu XW, Ma J, Wudl F, Zhang Q. Angew. Chem. Int. Ed. 2012; 51: 6094
    • 16b Li G, Doung HM, Zhang QC, Xiao JC, Liu L, Zhao YL, Zhang H, Huo FW, Li SZ, Ma J, Wudl F, Zhang Q. Chem. Commun. 2012; 48: 5974
    • 16c Xiao JC, Malliakas CD, Liu Y, Zhou F, Li G, Su HB, Kanatzidis MG, Wudl F, Zhang Q. Chem. Asian J. 2012; 7: 672
    • 16d Xiao J, Liu S, Liu Y, Ji L, Liu X, Zhang H, Sun XW, Zhang Q. Chem. Asian J. 2012; 7: 561
  • 17 Hart H In The Chemistry of Triple-Bonded Functional Groups . Patai S. Wiley; Chichester: 1994. Suppl. C2 Chap. 18
    • 18a Szabolcs K, Ádám IC, Tibor ZN, Sándor B, Géza T, Zoltán N. Org. Lett. 2012; 14: 2022
    • 18b Ikawa T, Nishiyama T, Nosaki T, Takagi A, Akai S. Org. Lett. 2011; 13: 1730
    • 19a Feriedman L, Logullo FM. J. Am. Chem. Soc. 1963; 85: 1549
    • 19b Logullo FM, Seitze AH, Friedman L. Org. Synth. 1968; 48: 12
    • 19c Buxton PC, Fensome M, Heaney H, Mason KG. Tetrahedron 1995; 51: 2959
  • 20 Akiyama T, Iwasaki Y, Kawanishi M. Chem. Lett. 1974; 229
    • 21a Rickborn B In Advances in Theoretically Interesting Molecules. Vol. 1. JAI; Greenwich, CT: 1989: 1
    • 21b Wickham PP, Hazen KH, Guo H, Jones G, Reuter KH, Scott WJ. J. Org. Chem. 1991; 56: 2045
  • 22 Campbell CD, Rees CW. J. Chem. Soc. C 1969; 742
  • 23 Himeshima Y, Sonoda T, Kobayashi H. Chem. Lett. 1983; 1211
  • 24 Kitamura T, Yamane M, Inoue K, Todaka M, Fukatsu N, Meng ZH, Fujiwara Y. J. Am. Chem. Soc. 1999; 121: 11674
  • 25 Peña D, Escudero S, Pérez D, Guitián E, Castedo L. Angew. Chem. Int. Ed. 1998; 37: 2659
  • 26 Peña D, Pérez D, Guitián E, Castedo L. Org. Lett. 1999; 1: 1555
  • 27 Barnett L, Ho DM, Baldridge KK, Pascal RA. Jr. J. Am. Chem. Soc. 1999; 121: 727
    • 28a Peña D, Pérez D, Guitián E, Castedo L. J. Am. Chem. Soc. 1999; 121: 5827
    • 28b Radhakrishnan KV, Yoshikawa E, Yamamoto Y. Tetrahedron Lett. 1999; 40: 7533
  • 29 Kaicharla T, Bhojgude SS, Biju TA. Org. Lett. 2012; 14: 6238
  • 30 Herwig PT, Müllen K. Adv. Mater. 1999; 11: 480
    • 31a Uno H, Yamashita Y, Kikuchi M, Watanabe H, Yamada H, Okujima T, Ogawa T, Ono N. Tetrahedron Lett. 2005; 46: 1981
    • 31b Yamada H, Yamashita Y, Kikuchi M, Watanabe H, Okujima T, Uno H, Ogawa T, Ohara K, Ono N. Chem. Eur. J. 2005; 11: 6212
    • 31c Katsuta S, Yamada H, Okujima T, Uno H. Tetrahedron Lett. 2010; 51: 1379
  • 32 Mondal R, Adhikari RM, Shah BK, Neckers DC. Org. Lett. 2007; 9: 2505
  • 33 Tönshoff C, Bettinger HF. Angew. Chem. Int. Ed. 2010; 49: 4125
  • 34 Duong MH. Ph.D. thesis. University of California; Los Angeles, USA: 2003: 50
  • 35 Heldmann C, Schulze M, Wegner G. Macromolecules 1996; 29: 4686
  • 36 Zhang Q, Divayana Y, Xiao JC, Wang ZY, Tiekink ER. T, Doung HM, Zhang H, Boey F, Sun XW, Wudl F. Chem. Eur. J. 2010; 16: 7422
    • 37a Lehoullier CS, Gribble GW. J. Org. Chem. 1983; 48: 2364
    • 37b Kitamura T, Fukatsu N, Fujiwara Y. J. Org. Chem. 1998; 63: 8579
    • 37c Mondal R, Shah BK, Neckers DC. J. Am. Chem. Soc. 2006; 128: 9612
    • 37d Watanabe M, Chang YJ, Liu SW, Chao TH, Goto K, Islam MM, Yuan CH, Tao YT, Shinmyozu T, Chow TJ. Nat. Chem. 2012; 4: 512
    • 38a Craig IM, Duong HM, Wudl F, Schwartz BJ. Chem. Phys. Lett. 2009; 477: 319
    • 38b Wudl F, Starkey K, Duong H. Abstr. Pap. Am. Chem. Soc. 2001; 221(2): 423
  • 39 Zhang Q, Xiao JC, Yin ZY, Doung HM, Qiao F, Boey F, Hu X, Zhang H, Wudl F. Chem. Asian. J. 2011; 6: 856
  • 40 Miller GP, Mack J. Org. Lett. 2000; 2: 3979
  • 41 Zimmerman HE, Amick DR. J. Am. Chem. Soc. 1973; 95: 3977
  • 42 Zhang QC. Master’s thesis. University of California; Los Angeles, USA: 2003
  • 43 Xiao JC, Divayana Y, Zhang Q, Doung HM, Zhang H, Boey F, Sun XW, Wudl F. J. Mater. Chem. 2010; 20: 8167
  • 44 Schuster II, Cracium L, Ho DM, Pascal RA. Jr. Tetrahedron 2002; 58: 8875
  • 45 Doung HM, Bendikov M, Steiger D, Zhang Q, Sonmez G, Yamada J, Wudl F. Org. Lett. 2003; 5: 4433
  • 46 Xu QF, Duong HM, Wudl F, Yang Y. Appl. Phys. Lett. 2004; 85: 3357
  • 47 Parkhurst RR, Swager TM. J. Am. Chem. Soc. 2012; 134: 15351
  • 48 Netka J, Crump SL, Rickborn B. J. Org. Chem. 1986; 51: 1189
    • 49a Chung YY, Chan SH, Wong HN. C. Tetrahedron Lett. 2000; 41: 5957
    • 49b Chan SH, Yick CY, Wong HN. C. Tetrahedron 2002; 58: 9413