Synlett 2013; 24(3): 338-342
DOI: 10.1055/s-0032-1318111
letter
© Georg Thieme Verlag Stuttgart · New York

High Surface Area CeO2 Promoted Suzuki–Miyaura Cross-Coupling of Arylboronic Acids and Aryl Iodides

Marilyn Graziano Mayer
a   Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina   Fax: +54(291)4595187   Email: gradivoy@criba.edu.ar
,
Fabiana Nador
a   Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina   Fax: +54(291)4595187   Email: gradivoy@criba.edu.ar
,
María Alicia Volpe
b   Planta Piloto de Ingeniería Química, PLAPIQUI (CONICET-UNS), Camino La Carrindanga Km 7, CC 717, 8000 Bahía Blanca, Argentina
,
Gabriel Radivoy*
a   Instituto de Química del Sur, INQUISUR (CONICET-UNS), Departamento de Química, Universidad Nacional del Sur, Avenida Alem 1253, 8000 Bahía Blanca, Argentina   Fax: +54(291)4595187   Email: gradivoy@criba.edu.ar
› Author Affiliations
Further Information

Publication History

Received: 30 November 2012

Accepted after revision: 04 January 2013

Publication Date:
17 January 2013 (online)


Abstract

High surface area cerium oxide (240 m2/g) efficiently promoted the Suzuki–Miyaura cross-coupling of aryl iodides with arylboronic acids, in the absence of palladium or any other ­transition-metal catalyst. Excellent selectivity towards the cross-coupling product was observed. Cerium oxide could be recovered and reused at least three times without any loss of activity.

 
  • References and Notes

    • 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Negishi E In Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley Interscience; New York, NY: 2002
    • 1c Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 1d Negishi E. Angew. Chem. Int. Ed. 2011; 50: 6738
    • 1e Tamao K, Sumitani K, Kumada M. J. Am. Chem. Soc. 1972; 94: 4374
    • 2a Suzuki A. J. Organomet. Chem. 1999; 576: 147
    • 2b Suzuki A. Angew. Chem. Int. Ed. 2011; 50: 6722
    • 3a Miyaura N In Metal-Catalyzed Cross-Coupling Reactions . Vol. 1. de Meijere A, Diederich F. 2nd ed. Wiley-VCH; Weinheim: 2004: Chap. 2
    • 3b Tietze LF, Ila H, Bell HP. Chem. Rev. 2004; 104: 3453
    • 3c Bedford RB, Cazin CS. J, Holder D. Coord. Chem. Rev. 2004; 48: 2283
    • 3d Dupont J, Consorti CS, Spencer J. Chem. Rev. 2005; 105: 2527
    • 3e Phan NT. S, Van Der Sluys M, Jones CW. Adv. Synth. Catal. 2006; 348: 609
    • 4a Alonso F, Beletskaya IP, Yus M. Tetrahedron 2008; 64: 3047
    • 4b Seki M. Synthesis 2006; 2975
    • 4c Felpin F.-X, Ayad T, Mitra S. Eur. J. Org. Chem. 2006; 2679
    • 4d Yin L, Liebscher J. Chem. Rev. 2007; 107: 133
    • 6a Köhler K, Heidenreich RG, Soomro SS, Pröckl SS. Adv. Synth. Catal. 2008; 350: 2930
    • 6b Amoroso F, Colussi S, Del Zotto A, Llorca J, Trovarelli A. J. Mol. Catal. A: Chem. 2010; 315: 197
    • 6c Andrews SP, Stepan AF, Tanaka H, Ley SV, Smith MD. Adv. Synth. Catal. 2005; 347: 2002
    • 6d Kazmaier U, Hähn S, Weiss TD, Kautenburger R, Maier WF. Synlett 2007; 2579
    • 6e Kim N, Kwon MS, Park CM, Park J. Tetrahedron Lett. 2004; 45: 7057
    • 6f Cargnello M, Grzelczak M, Rodríguez-González B, Syrgiannis Z, Bakhmutsky K, La Parola V, Liz-Marzán LM, Gorte RJ, Prato M, Fornasiero P. J. Am. Chem. Soc. 2012; 134: 11760
    • 7a Willis NG, Guzman J. Appl. Catal. A: Gen. 2008; 339: 68
    • 7b Carretin S, Corma A, Iglesias M, Sanchez F. Appl. Catal. A: Gen. 2005; 291: 247

      For some examples, see:
    • 8a Moglie Y, Vitale C, Radivoy G. Tetrahedron Lett. 2008; 49: 1828
    • 8b Nador F, Fortunato L, Moglie Y, Vitale C, Radivoy G. Synthesis 2009; 4027
    • 8c Nador F, Moglie Y, Vitale C, Yus M, Alonso F, Radivoy G. Tetrahedron 2010; 66: 4318
    • 8d Nador F, Mascaró E, Castro M, Vitale C, Radivoy G. ARKIVOC 2011; (vii): 312
    • 8e Alonso F, Moglie Y, Radivoy G, Yus M. Synlett 2012; 23: 2179
    • 9a Bhanage BM, Fujita S.-I, Ikushima Y, Arai M. App. Catal. A: Gen. 2001; 219: 259
    • 9b Juárez R, Concepción P, Corma A, García H. Chem. Commun. 2010; 46: 4181
    • 9c Juárez R, Corma A, García H. Green Chem. 2009; 11: 949
    • 9d Honda M, Sonehara S, Yasuda H, Nakagawa Y, Tomishige K. Green Chem. 2011; 13: 3406
    • 9e Juárez R, Corma A, García H. Pure Appl. Chem. 2012; 84: 685
    • 9f Primo A, Aguado E, García H. ChemCatChem 2012; doi: 10.1002/cctc.201200329
    • 10a Agawane SM, Nagarkar JM. Tetrahedron Lett. 2011; 52: 5220
    • 10b Agawane SM, Nagarkar JM. Tetrahedron Lett. 2011; 52: 3499
  • 11 Typical Experimental Procedure: High surface area CeO2 (250 mg, 240 m2/g, Rhône-Poulenc) was calcined inside the reaction flask prior to use. The calcination treatment consisted in heating by means of a heat gun (160 ºC) under vacuum (0.1 Torr) for 5 min. Once the reaction flask reached r.t., the corresponding boronic acid (1 mmol) and K2CO3 (2 mmol, 276 mg) were added together with DMF (2 mL). The reaction vessel was immersed in a pre-heated silicon oil bath at 150 ºC. After stirring the mixture at this temperature for 5 min, a solution of the aryl halide (0.7 mmol) in DMF (1 mL) was added. The reaction progress was monitored by GC–MS. The resulting suspension was diluted with Et2O (10 mL) and filtered by Büchner funnel. The filtrate was evaporated (15 Torr) and the resulting residue was purified by flash column chromatography (silica gel, hexane–EtOAc) to afford the corresponding biaryl product. The following known compounds included in Table 2 were characterized by comparison of their chromatographic and spectroscopic data (1H NMR, 13C NMR, and MS) with those described in the literature: (1,1′-biphenyl)-4-carbonitrile (3ab; ref 13), 4-(trifluoromethyl)-1,1′-biphenyl (3ac; ref 14), 4-methyl-1,1′-biphenyl (3aa; ref 15), 4-methoxy-1,1′-biphenyl (3ad; ref 15), 4-chloro-1,1′-biphenyl (3ae; ref 15), 4-fluoro-1,1′-biphenyl (3af; ref 14), 4-methoxy-4′-methyl-1,1′-biphenyl (3ba; ref 16), N,N-4′-trimethyl-(1,1′-biphenyl)-4-amine (3ca; ref 15).
    • 12a Leadbeater NE, Marco M. Angew. Chem. Int. Ed. 2003; 42: 1407
    • 12b Leadbeater NE, Marco M. J. Org. Chem. 2003; 68: 5660
    • 12c Arvela RK, Leadbeater NE, Sangi MS, Williams VA, Granados P, Singer RD. J. Org. Chem. 2005; 70: 161
    • 13a Kostas ID, Coutsolelos AG, Charalambidis G, Skondra A. Tetrahedron Lett. 2007; 48: 6688
    • 13b Saito S, Oh-tani S, Miyaura N. J. Org. Chem. 1997; 62: 8024
  • 14 Thathagar MB, Beckers J, Rothenberg G. Adv. Synth. Catal. 2003; 345: 979
  • 15 Peng Y.-Y, Liu J, Lei X, Yin Z. Green Chem. 2010; 12: 1072
  • 16 Yin L, Zhang Z.-H, Wang Y.-M. Tetrahedron 2006; 62: 9359