Synlett 2013; 24(2): 181-184
DOI: 10.1055/s-0032-1317954
letter
© Georg Thieme Verlag Stuttgart · New York

Stereoselective Synthesis of Carbohydrate-Derived N-Sulfonyl Aziridines

Humberto Rodríguez-Solla*
a   Departamento de Química Orgánica e Inorgánica and Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, 33071 Oviedo, Spain   Fax: +34(985)102971   Email: hrsolla@uniovi.es
,
Carmen Concellón
a   Departamento de Química Orgánica e Inorgánica and Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, 33071 Oviedo, Spain   Fax: +34(985)102971   Email: hrsolla@uniovi.es
,
Noemí Alvaredo
a   Departamento de Química Orgánica e Inorgánica and Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, 33071 Oviedo, Spain   Fax: +34(985)102971   Email: hrsolla@uniovi.es
,
Ricardo Llavona
a   Departamento de Química Orgánica e Inorgánica and Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, 33071 Oviedo, Spain   Fax: +34(985)102971   Email: hrsolla@uniovi.es
,
Santiago García-Granda
a   Departamento de Química Orgánica e Inorgánica and Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, 33071 Oviedo, Spain   Fax: +34(985)102971   Email: hrsolla@uniovi.es
,
M. Rosario Díaz
a   Departamento de Química Orgánica e Inorgánica and Química Física y Analítica, Facultad de Química, Universidad de Oviedo, Julián Clavería 8, 33071 Oviedo, Spain   Fax: +34(985)102971   Email: hrsolla@uniovi.es
,
Raquel G. Soengas
b   Departamento de Química & QOPNA, Universidade de Aveiro, 3810-193 Aveiro, Portugal
› Author Affiliations
Further Information

Publication History

Received: 07 November 2012

Accepted after revision: 05 December 2012

Publication Date:
21 December 2012 (online)


Abstract

A novel reaction of iodomethyllithium with a variety of sugar-derived N-sulfinyl imines, under very mild conditions, is ­described. N-Sulfonyl aziridines were easily obtained in high yields and in moderate to good stereoselectivities through an addition/­oxidation protocol. A mechanism is proposed that is ­supported by the results of X-ray diffraction studies.

Supporting Information

 
  • References and Notes

    • 2a Osborn HM. I, Sweeney J. Tetrahedron: Asymmetry 1997; 8: 1693
    • 2b Atkinson RS. Tetrahedron 1999; 55: 1519
    • 2c Davis FA, Liu H, Zhou P, Fang T, Reddy GV, Zhang Y. J. Org. Chem. 1999; 64: 7559
    • 2d Kasai M, Kono M. Synlett 1992; 778
    • 2e Sweeney JB. Chem. Soc. Rev. 2002; 31: 247
    • 3a Trost BM, Dong G. Org. Lett. 2007; 9: 2357
    • 3b Caldwell JJ, Craig D. Angew. Chem. Int. Ed. 2007; 46: 2631
    • 3c Crawley SL, Funk RL. Org. Lett. 2006; 8: 3995
    • 3d Banwell MG, Lupton DW. Org. Biomol. Chem. 2005; 3: 213
    • 3e Smith AB. III, Kim D. Org. Lett. 2004; 6: 1493
  • 4 Lefemine DV, Dann M, Barbatschi F, Hausmann WK, Zbinovsky V, Monnikendam P, Adam J, Bohnos N. J. Am. Chem. Soc. 1962; 34: 3184
  • 5 Gerhart F, Higgins W, Tardif C, Ducep J. J. Med. Chem. 1990; 33: 2157
    • 6a Han I, Kohn H. J. Org. Chem. 1991; 56: 4648
    • 6b Skibo EB, Islam I, Heileman MJ, Schultz WG. J. Med. Chem. 1994; 37: 78
  • 7 Bisseret P, Bouix-Peter C, Jacques O, Henriot S, Eustache J. Org. Lett. 1999; 1: 1181
    • 8a Dhavale DD, Kumar KS. A, Chaudhari VD, Sharma T, Sabharwalb SG, Reddy JP. Org. Biomol. Chem. 2005; 3: 3720
    • 8b Kumar KS. A, Chaudhari VD, Dhavale DD. Org. Biomol. Chem. 2008; 6: 703

      For two recent reviews on inhibitors of glycosidases, see:
    • 9a Asano N, Nash RJ, Molyneux RJ, Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1645
    • 9b Lillelund VH, Jensen HH, Liang X, Bols M. Chem. Rev. 2002; 102: 515
    • 10a Soengas RG, Estévez AM, Estévez JC, Estévez RJ. C. R. Chim. 2011; 14: 313
    • 10b Gruner SA. W, Lorcardi E, Lohof E, Kessler H. Chem. Rev. 2002; 102: 491
    • 11a Kroutil J, Trnka T, Buděšínský M, Černý M. Eur. J. Org. Chem. 2002; 2449
    • 11b Karban J, Kroutil J, Buděšínský M, Císařová I. Eur. J. Org. Chem. 2009; 6399
    • 12a Armstrong A, Baxter CA, Lamont SG, Pape AR, Wincewicz R. Org. Lett. 2007; 9: 351
    • 12b Catino AJ, Nichols JM, Forslund RE, Doyle MP. Org. Lett. 2005; 7: 2787
    • 12c Mahoney JM, Smith CR, Johnston JN. J. Am. Chem. Soc. 2005; 127: 1354
    • 12d Siu T, Yudin AK. J. Am. Chem. Soc. 2002; 124: 530
    • 13a Bilke JL, Dzuganova M, Fröhlich R, Würthwein E.-U. Org. Lett. 2005; 7: 3267
    • 13b Bouyacoub A, Volatron F. Eur. J. Org. Chem. 2002; 4143
    • 13c Hudlicky T, Rinner U, González D, Akgun H, Schilling S, Siengalewicz P, Martinot TA, Pettit GR. J. Org. Chem. 2002; 67: 8726
    • 13d Ibuka T. Chem. Soc. Rev. 1998; 27: 145
    • 13e Schaumann E, Kirschning A. Synlett 2007; 177
    • 14a Watson ID. G, Yu L, Yudin AK. Acc. Chem. Res. 2006; 39: 194
    • 14b Schaumann E, Kirschning A. Synlett 2007; 177
    • 15a Hodgson DM, Kloesges J, Evans B. Org. Lett. 2008; 10: 2781
    • 15b Denolf B, Leemans E, De Kimpe N. J. Org. Chem. 2007; 72: 3211
    • 15c Sweeney JB, Cantrill AA, Drew MG. B, McLaren AB, Thobhani S. Tetrahedron 2006; 62: 3694
    • 15d Sweeney JB, Cantrill AA, McLaren AB, Thobhani S. Tetrahedron 2006; 62: 3681
  • 16 Karban J, Kroutil J. Adv. Carbohydr. Chem. Biochem. 2006; 60: 27
    • 17a Concellón JM, Rodríguez-Solla H, Simal C. Org. Lett. 2008; 10: 4457
    • 17b Concellón JM, Rodríguez-Solla H, Bernad PL, Simal C. J. Org. Chem. 2009; 74: 2452
    • 18a Wang Y, Song J, Hong R, Li H, Deng L. J. Am. Chem. Soc. 2006; 128: 8156
    • 18b Sisko J, Weinreb SM. J. Org. Chem. 1990; 55: 393
  • 19 Rodríguez-Solla H, Concellón C, Alvaredo N, Soengas RG. Tetrahedron 2012; 68: 1736
  • 20 Synthesis of 6-Deoxy-1,2:3,4-di-O-isopropylidene-6[(4-methoxyphenyl)imino]-α-d-galactopyranose (1a): 19 N-p-Methoxyphenylimine 1a was prepared in nearly quantitative yields by stirring a solution of the corresponding aldehyde (10 mmol, 1.0 equiv) in CH2Cl2 with p-anisidine (10 mmol, 1.0 equiv), in the presence of MgSO4 (2 g) for 16 h. Yield: 3.4 g (93%); orange oil; [α]D 20 +7.2 (c 0.6 in CHCl3); Rf  = 0.62 (hexane–EtOAc, 3:1). IR (neat): 3060, 1674, 1510, 1260 cm–1. 1H NMR (300 MHz, CDCl3): δ = 7.75 (d, J = 4.0 Hz, 1 H), 7.03 (d, J = 8.6 Hz, 2 H), 6.78 (d, J = 8.6 Hz, 2 H), 5.56 (d, J = 4.9 Hz, 1 H), 4.58 (dd, J = 7.7, 2.3 Hz, 1 H), 4.45–4.22 (m, 2 H),4.28 (dd, J = 5.0, 2.4 Hz, 1 H), 3.69 (s, 3 H), 1.48 (s, 3 H), 1.39 (s, 3 H), 1.26 (s, 3 H), 1.24 (s, 3 H); 13C NMR (75 MHz, CDCl3): δ = 160.9 (CH), 158.1 (C), 143.7 (C), 121.8 (2 × CH), 113.9 (2 × CH), 109.2 (C), 108.5 (C), 96.0 (CH), 73.1 (CH), 70.3 (CH), 70.2 (CH), 55.1 (CH3), 53.2 (CH), 25.8 (CH3), 25.7 (CH3), 24.6 (CH3), 24.0 (CH3); MS (ESI+): m/z (%) = 364 (100) [M + H]+, 338 (7), 322 (30), 306 (4); HRMS (ESI+-TOF): m/z [M + H]+ calcd for C19H26NO6: 364.1760; found: 364.1755.
  • 21 Synthesis of N-tert-Butylsulfinyl Imines 2: To a solution of the corresponding aldehyde (0.5 mmol, 1 equiv) in anhydrous CH2Cl2 (10 mL), [Ti(OEt)4] (2 mmol, 4 equiv) was added slowly by using a syringe. N-tert-Butanesulfinamide (0.5 mmol, 1 equiv) was added in one portion and the reaction mixture was stirred at r.t. for16 h. The excess [Ti(OEt)4] was decomposed by slow addition of the reaction mixture to a solution of brine. The resulting suspension was filtered through a pad of Celite, washed with ethyl acetate, the organic layer was separated, and the aqueous phase was extracted with ethyl acetate (3 × 25 mL). The combined organic extracts were dried over Na2SO4 and concentrated under vacuum to yield crude N-tert-butylsulfinyl imines 2 without further purification. 6-Deoxy-6-(N-tert-butylsulfinyl)imino-1,2:3,4-di-O-isopropylidene-α-d-galactopyranose (2a): Yield: 155.8 mg (86%); yellow oil; R f  = 0.36, 0.33 (hexane–EtOAc, 3:1). IR (neat): 3051, 1633, 1458, 1071, 735, 702 cm–1; 1H NMR (300 MHz, CDCl3): δ = 8.00 (d, J = 2.7 Hz, 1 H), 5.62 (d, J = 4.9 Hz, 1 H), 4.64 (dd, J = 7.8, 2.4 Hz, 1 H), 4.60 (app. t, J = 2.7 Hz, 1 H), 4.49 (dd, J = 7.8, 2.4 Hz, 1 H), 4.35 (dd, J = 4.9, 2.4 Hz, 1 H), 1.52 (s, 3 H), 1.39 (s, 3 H), 1.33 (s, 3 H), 1.28 (s, 3 H), 1.20 (s, 9 H); δ (minor isomer) = 8.00 (d, J = 2.6 Hz, 1 H), 5.65 (d, J = 5.2 Hz, 1 H), 4.64 (dd, J = 7.7, 2.4 Hz, 1 H), 4.56 (dd, J = 7.6, 2.6 Hz, 1 H), 4.40–4.37 (m, 1 H), 4.31–4.20 (m, 1 H), 1.43 (s, 3 H), 1.32 (s, 3 H), 1.29 (s, 3 H), 1.28 (s, 3 H), 1.20 (s, 9 H); 13C NMR (75 MHz, CDCl3): δ = 167.1 (CH), 109.6 (C), 109.4 (C), 96.1 (CH), 72.6 (CH), 70.4 (2 × CH), 70.2 (CH), 57.2 (C), 25.9 (CH3), 25.6 (CH3), 24.6 (CH3), 24.1 (CH3), 22.2 (3 × CH3); δ (minor isomer) = 165.2 (CH), 109.8 (C), 109.7 (C), 96.1 (CH), 71.9 (CH), 70.4 (2 × CH), 70.1 (CH), 57.1 (C), 25.9 (CH3), 25.6 (CH3), 24.6 (CH3), 24.1 (CH3), 22.3 (3 × CH3); MS (ESI+): m/z (%) = 400 (5) [M + K]+, 386 (9) [M + 2 + Na]+, 385 (20) [M + 1 + Na]+, 384 (100) [M +Na]+; HRMS (ESI+-TOF): m/z [M + Na]+ calcd for C16H27NO6SNa: 384.1457; found: 384.1462.
  • 22 Synthesis of N-Sulfonyl Aziridines 3: To a mixture of the corresponding N-sulfinyl mine 2 (0.4 mmol, 1 equiv) and CH2I2 (0.6 mmol, 1.5 equiv) in anhydrous THF (2 mL), was added a solution of MeLi (1.5 M in Et2O, 0.48 mmol, 1.2 equiv) at –78 °C. The solution was stirred at –78 °C for 30 min, and then allowed to warm to r.t. and stirred for an additional 30 min. The reaction was then quenched with aq. NH4Cl and the organic layer was extracted with Et2O (3 × 10 mL). The combined extracts were dried with Na2SO4 and concentrated under vacuum to yield crude N-sulfinyl aziridines. Finally, to a solution of the corresponding sulfinyl aziridine in CH2Cl2 (1 mL), anhydrous MCPBA (0.4 mmol, 1 equiv) was added at r.t. in one portion. When the reaction was complete (less than 1 min), the reaction was diluted with CH2Cl2 (2 mL) and washed with sat. NaHCO3 (3 × 3 mL). Organic layers were dried over anhydrous Na2SO4 and the solvents were evaporated, giving the corresponding N-sulfonyl aziridines 3, which were purified by flash chromatography on silica gel (hexane–EtOAc, 3:1). 6,7-Deoxy-6,7-(N-tert-butylsulfinyl)imino-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-heptapyranose (3a): Yield: 135.1 mg (86%); white solid; m.p. 84–85 °C (Et2O–hexane); [α]D 20 –9.2 (c 1.0, CHCl3); R f  = 0.30 (hexane–EtOAc, 3:1). IR (neat): 1640, 1458, 1308, 1067, 724 cm–1. 1H NMR (300 MHz, CDCl3): δ = 5.50 (d, J = 4.9 Hz, 1 H), 4.61 (dd, J = 7.9, 2.4 Hz, 1 H), 4.33 (dd, J = 7.9, 1.5 Hz, 1 H), 4.30 (dd, J = 4.9, 2.4 Hz, 1 H), 3.63 (dd, J = 5.2, 1.5 Hz, 1 H), 3.09 (dt, J = 6.9, 5.2 Hz, 1 H), 2.64 (d, J = 6.9 Hz, 1 H), 2.33 (d, J = 5.2 Hz, 1 H), 1.49 (s, 9 H), 1.47 (s, 3 H), 1.44 (s, 3 H), 1.34 (s, 3 H), 1.32 (s, 3 H); 13C NMR (75 MHz, CDCl3): δ = 109.3 (C), 108.4 (C), 96.0 (CH), 71.4 (CH), 70.3 (2 × CH), 67.0 (CH), 59.1 (C), 37.0 (CH), 31.2 (CH2), 25.8 (CH3), 25.7 (CH3), 24.6 (CH3), 24.1 (CH3), 23.9 (3 × CH3); MS (ESI+): m/z (%) = 430 (18) [M + K]+, 416 (14) [M + 2 + Na]+, 415 (32) [M + 1 + Na]+, 414 (100) [M + Na]+; HRMS (ESI+-TOF): m/z [M + Na]+ calcd for C17H29NO7NaS: 414.1562; found: 414.1558.
  • 23 CCDC 900247 contains the supplementary crystallographic data for compound 3d. This data can be obtained free of charge via: www.ccdc.cam.ac.uk/conts/retrieving.html [or the Cambridge Data Center, 12 Union Road, Cambridge CB2 1EZ, UK; fax +44(1223)336033; or deposit@ccdc.cam.ac.uk].
    • 24a Rodríguez-Solla H, Alvaredo N, Soengas RG. Synlett 2012; 23: 2083
    • 24b Soengas RG, Silva S, Estévez AM, Estévez JC, Estévez RJ, Rodríguez-Solla H. Eur. J. Org. Chem. 2012; 4339