Synlett 2012; 23(19): 2746-2748
DOI: 10.1055/s-0032-1317701
cluster
© Georg Thieme Verlag Stuttgart · New York

C–H Bond Functionalization & Synthesis in the 21st Century: A Brief History and Prospectus

M. Christina White
Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, IL 61801, USA   Fax: +1(217)2445943   Email: white@scs.uiuc.edu
› Author Affiliations
Further Information

Publication History

Received: 08 November 2012

Accepted: 09 November 2012

Publication Date:
22 November 2012 (online)


Abstract

Among the frontier challenges facing synthetic chemistry in the 21st century are the interconnected goals of increasing control of chemical reactivity and synthesizing complex molecules with higher levels of efficiency. Catalytic C–H bond functionalization reactions are increasingly being discovered that meet the criterion for useful reactivity (i.e. preparative, predictably selective, and general). Consequently, such reactions are enabling chemists to exploit strategies for complex molecule synthesis and derivatization previously accessible only in nature. This preface highlights some of the achievements and important challenges that remain in the area of C–H bond functionalization.�

 
  • References and Notes

  • 1 Groves JT, Nemo TE, Myers RS. J. Am. Chem. Soc. 1979; 101: 1032 , and references therein
    • 2a Bennett MA, Milner DL. J. Am. Chem. Soc. 1969; 91: 6983
    • 2b Gol’dshleger NF, Es’kova VV, Shilov AE, Shteinman AA. Zh. Fiz. Khim. (Engl. Transl.) 1972; 46: 785
    • 2c Komiya S, Ito T, Cowie M, Yamamoto A, Ibers JA. J. Am. Chem., Soc. 1976; 98: 3874
    • 2d Crabtree RH, Mihelcic JM, Quirk JM. J. Am. Chem. Soc. 1979; 101: 7738

    • For mechanistic studies, see:
    • 2e Bengali AA, Schultz RH, Moore B, Bergman RG. J. Am. Chem. Soc. 1994; 116: 9585
    • 2f Stahl SS, Labinger JA, Bercaw JE. Angew. Chem. Int. Ed. 1998; 37: 2180
  • 3 Murai S, Kakiuchi F, Sekine S, Tanaka Y, Kamatani A, Sonoda M, Chatani N. Nature 1993; 366: 529
    • 4a Dick AR, Hull KL, Sanford MS. J. Am. Chem. Soc. 2004; 126: 2300
    • 4b Chen X, Goodhue CE, Yu J.-Q. J. Am. Chem. Soc. 2006; 128: 12634
    • 4c Hull KL, Anani WQ, Sanford MS. J. Am. Chem. Soc. 2006; 128: 7134
    • 4d Campeau L.-C, Parisien M, Jean A, Fagnou K. J. Am. Chem. Soc. 2006; 128: 581
    • 4e Chiong HA, Pham Q.-N, Daugulis O. J. Am. Chem. Soc. 2007; 129: 9879
    • 4f Jordon-Hore JA, Johansson CC. C, Gulias M, Beck EM, Gaunt MJ. J. Am. Chem. Soc. 2008; 130: 16184
    • 4g Wang C, Piel I, Glorius F. J. Am. Chem. Soc. 2009; 131: 4194
    • 4h Wang X, Truesdale L, Yu J.-Q. J. Am. Chem. Soc. 2010; 132: 3648

    • For an example with rhodium, see:
    • 4i Thalji RK, Ahrendt KA, Bergman RG, Ellman JA. J. Am. Chem. Soc. 2001; 123: 9692
    • 5a Breslow R, Gellman SH. J. Am. Chem. Soc. 1983; 105: 6729
    • 5b Doyle MP, Dyatkin AB, Roos GH.P, Canas F, Pierson DA, van Basten A. J. Am. Chem. Soc. 1994; 116: 4507
    • 5c Taber DF, Ruckle Jr. RE. J. Am. Chem. Soc. 1986; 108: 7686
    • 6a Espino CG, Du Bois J. Modern Rhodium-Catalyzed Organic Reactions. Wiley-VCH; Weinheim: 2005
    • 6b Davies HM. L, Beckwith RE. J. Chem. Rev. 2003; 103: 2861
    • 7a Groves JT, Neumann R. J. Am. Chem. Soc. 1989; 111: 2900
    • 7b Breslow R, Huang Y, Zhang X, Yang J. Proc. Nat. Acad. Sci. 1997; 94: 11156
    • 7c Das S, Incarvito CD, Crabtree RH, Brudvig GW. Science 2006; 213: 1941
  • 8 For a general carboxylic acid group directed approach to C–H hydroxylations with a non-heme iron oxo, see: Bigi MA, Reed SA, White MC. J. Am. Chem. Soc. 2012; 134: 9721
    • 9a Cho J.-Y, Tse MK, Holmes D, Maleczka Jr. RE, Smith III. MR. Science 2002; 295: 305
    • 9b Ishiyaya T, Takagi J, Ishida K, Miyaura N, Anasrasi NR, Hartwig JF. J. Am. Chem. Soc. 2002; 124: 390

      For C–H esterification, see:
    • 10a Chen MS, White MC. J. Am. Chem. Soc. 2004; 126: 1346
    • 10b Chen MS, Prabagaran N, Labenz NA, White MC. J. Am. Chem. Soc. 2005; 127: 6970
    • 10c Fraunhoffer KJ, Prabagaran N, Sirois LE, White MC. J. Am. Chem. Soc. 2006; 128: 9032
    • 10d Delcamp JH, Brucks AP, White MC. J. Am. Chem. Soc. 2008; 130: 11270
    • 10e Vermeulen NA, Delcamp JH, White MC. J. Am. Chem. Soc. 2010; 132: 11323
    • 10f Gormisky PE, White MC. J. Am. Chem. Soc. 2011; 133: 12584
    • 10g Mitsudome T, Umetani T, Nosaka N, Mori K, Mizugaki T, Ebitani K, Kaneda K. Angew. Chem. Int. Ed. 2006; 45: 481
    • 10h Pilarski LT, Selander N, Bose D, Szabo KJ. Org. Lett. 2009; 11: 5518
    • 10i Lin B.-L, Labinger JA, Bercaw JE. Can. J. Chem. 2009; 87: 264
    • 10j Thiery E, Aouf C, Belloy J, Harakat D, Le Bras J, Muzart J. J. Org. Chem. 2010; 75: 1771
    • 10k Henderson WH, Check CT, Proust N, Stambuli JP. Org. Lett. 2010; 12: 824
    • 10l Campbell AN, White PB, Guzei IA, Stahl SS. J. Am. Chem. Soc. 2010; 132: 15116

      For C–H amination, see:
    • 11a Larock RC, Hightower TR, Hasvold LA, Peterson KP. J. Org. Chem. 1996; 61: 3584
    • 11b Fraunhoffer KJ, White MC. J. Am. Chem. Soc. 2007; 129: 7274
    • 11c Reed SA, White MC. J. Am. Chem. Soc. 2008; 130: 3316
    • 11d Liu G, Yin G, Wu L. Angew. Chem. Int. Ed. 2008; 47: 4733
    • 11e Rice GT, White MC. J. Am. Chem. Soc. 2009; 131: 11707
    • 11f Reed SA, Mazzotti AR, White MC. J. Am. Chem. Soc. 2009; 131: 11701
    • 11g Qi X, Rice GT, Lall MS, Plummer MS, White MC. Tetrahedron 2010; 66: 4816
    • 11h Nahra F, Liron F, Prestat G, Mealli C, Messaoudi A, Poli G. Chem. Eur. J. 2009; 15: 11078
    • 11i Shimizu Y, Obora Y, Ishii Y. Org. Lett. 2010; 12: 1372

      For C–H alkylation, see:
    • 12a Young AJ, White MC. J. Am. Chem. Soc. 2008; 130: 14090
    • 12b Young AJ, White MC. Angew. Chem. Int. Ed. 2011; 50: 6824
    • 12c Lin S, Song C.-X, Cai G.-X, Wang W.-H, Shi Z.-J. J. Am. Chem. Soc. 2008; 130: 12901
  • 13 For dehydrogenations, see: Stang EM, White MC. J. Am. Chem. Soc. 2011; 133: 14892
  • 15 Chen MS, White MC. Science 2007; 318: 783
  • 16 Chen MS, White MC. Science 2010; 327: 566
  • 17 White MC. Science 2012; 335: 807
    • 18a Liu W, Groves JT. J. Am. Chem. Soc. 2010; 132: 12847
    • 18b Liu W, Cheng M.-J, Nielsen RJ, Goddard III. WA, Groves JT. Science 2012; 337: 1322
    • 18c Litvinas ND, Brodsky BH, Du Bois J. Angew. Chem. Int. Ed. 2009; 48: 4513
  • 19 Paradine SM, White MC. J. Am. Chem. Soc. 2012; 134: 2036

    • For examples of late-state C–H oxidations:
    • 20a Fraunhoffer KJ, Bachovchin DA, White MC. Org. Lett. 2005; 7: 223
    • 20b Covell DJ, Vermeulen NA, Labenz NA, White MC. Angew. Chem. Int. Ed. 2006; 45: 8217
    • 20c Stang EM, White MC. Nature Chem. 2009; 1: 547
    • 20d Stang EM, White MC. Angew. Chem. Int. Ed. 2011; 50: 2094
    • 20e Hinmann A, Du Bois J. J. Am. Chem. Soc. 2003; 125: 11510
    • 20f Davies HM. L, Dai X, Long MS. J. Am. Chem. Soc. 2006; 128: 2485
    • 20g Kim J, Ashenhurst JA, Movassaghi M. Science 2009; 324: 238

    • For seminal examples using allylic C–H oxidation, see:
    • 20h Nicolaou KC, Yang Z, Liu JJ, Ueno H, Nantermet PG, Gui RK, Claibaurne CF, Reynaud J, Couladouros EA, Paulvannan K, Sorenson EJ. Nature 1994; 367: 630
    • 20i Wender PA, Jesudason CD, Nakhira H, Tamura N, Tebe AL, Ueno YJ. J. Am. Chem. Soc. 1997; 119: 12976
    • 21a Bigi MA, Reed SA, White MC. Nature Chem. 2011; 3: 216
    • 21b ref. 8, 15, 16.
    • 21c Wender PA, Hilinski MK, Mayweg AV.W. Org. Lett. 2005; 7: 79