Synlett 2012; 23(17): 2504-2510
DOI: 10.1055/s-0032-1317324
letter
© Georg Thieme Verlag Stuttgart · New York

Synthesis and Optoelectrochemical Properties of Stilbenophanes Having Carbazole Moieties

Perumal Rajakumar*
a   Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India   Fax: +91(44)22352492   Email: perumalrajakumar@gmail.com
,
Karuppannan Sekar
b   Department of Chemistry, Anna University Constituent College Dindigul, Dindigul 624 622, India
,
Nagarathinam Venkatesan
a   Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India   Fax: +91(44)22352492   Email: perumalrajakumar@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 20 July 2012

Accepted after revision: 06 September 2012

Publication Date:
28 September 2012 (online)


Abstract

A series of stilbenophanes having N-arylated carbazole moieties possessing small and large cavities have been synthesized via McMurry coupling of the corresponding dialdehyde derived from N-arylation of carbazole with various dibromide followed by formylation. The electrochemical, photophysical, and complexation properties of all the stilbenophanes with electron-deficient guest molecules like TCNQ, TCNE, and PQT were also carried out at different concentrations.

 
  • References and Notes

  • 1 For an excellent recent monograph, see: Modern Cyclophane Chemistry . Gleiter R, Hopf H. Wiley-VCH; Weinheim: 2004
  • 2 For a recent review, see: Tusji T. In Modern Cyclophane Chemistry . Gleiter R, Hopf H. Wiley-VCH; Weinheim: 2004: 81-104
  • 3 Morin J.-F, Leclere M, Adés D, Siove A. Macromol. Rapid Commun. 2005; 26: 761
  • 4 Wong K.-T, Hung T.-H, Chao T.-C, Ho T.-I. Tetrahedron Lett. 2005; 46: 855
  • 5 Adhikari RM, Mondal R, Shah BK, Neckers DC. J. Org. Chem. 2007; 72: 4727
  • 6 Promarak V, Ichikawa M, Meunmart D, Sudyoadsuk T, Saengsuwana S, Keawin T. Tetrahedron Lett. 2006; 47: 8949
  • 7 Ning Z, Zhang O, Wu W, Pei H, Liu B, Tian H. J. Org. Chem. 2008; 73: 3791
  • 8 Zhao T, Liu Z, Song Y, Xu W, Zhang D, Zhu D. J. Org. Chem. 2006; 71: 7422
  • 9 Naddo T, Che Y, Zhang W, Balakrishnan K, Yang X, Yen M, Zhao J, Moore JS, Zang L. J. Am. Chem. Soc. 2007; 129: 6978
  • 10 Nakamura Y, Suzuki M, Imai Y, Nishimura J. Org. Lett. 2004; 6: 2797
  • 11 Brown AB, Gibson TL, Clayton Baum J, Ren T, Smith TM. Sens. Actuators, B 2005; 110: 8
  • 12 Sanda F, Nakai T, Kobayashi N, Masuda K. Macromolecules 2004; 37: 2703
  • 13 Morin JF, Leclerc M, Ades D, Siove A. Macromol. Rapid Commun. 2005; 26: 761
  • 14 Brunner K, Dijken AV, Börner H, Bastiaansen JJ. A. M, Kiggen NM. M, Langeveld BM. W. J. Am. Chem. Soc. 2004; 126: 6035
  • 15 Cabaj J, Idzik K, Soloducho J, Chyla A. Tetrahedron 2006; 62: 758
  • 16 Chen C.-H, Lin JT, Yeh M.-CP. Tetrahedron 2006; 62: 8564
  • 17 Chung M.-K, Qi G, Stryker JM. Org. Lett. 2006; 8: 1491
  • 18 Chen H.-B, Yin J, Wang Y, Pei J. Org. Lett. 2008; 10: 3113
  • 19 Hopf H, Mlynek C. J. Org. Chem. 1990; 55: 1361
  • 20 Heirtzler FR, Hopf H, Jones PG, Bubenitschek P. Tetrahedron Lett. 1995; 36: 1239
  • 21 Compound 11a White solid; yield 82%; mp 110–112 °C. 1H NMR (300 MHz, CDCl3): δ = 1.63 (s, 3 H), 7.30 (t, 4 H, J = 7.5 Hz), 7.44 (t, 4 H, J = 7.8 Hz), 7.51–7.56 (m, 6 H), 7.62 (s, 1 H), 8.15 (d, 4 H, J = 7.8 Hz). 13C NMR (75 MHz, CDCl3): δ = 21.6, 109.8, 120.2, 120.5, 122.5, 123.6, 126.1, 126.6, 139.2, 140.7, 141.7. MS (EI): m/z = 422 [M+]. Anal. Calcd (%) for C31H22N2: C, 88.12; H, 5.25; N, 6.63. Found: C, 88.24; H, 5.34; N, 6.78.
  • 22 Dialdehyde 16a White solid; yield 72%; mp 102–104 °C. 1H NMR (300 MHz, CDCl3): δ = 1.65 (s, 3 H), 7.26 (s, 1 H), 7.38–7.43 (m, 2 H), 7.52–7.59 (m, 8 H), 7.99 (dd, 2 H, J = 8.6, 1.2 Hz), 8.22 (d, 2 H, J = 7.5 Hz), 8.68 (s, 2 H), 10.13 (s, 2 H). 13C NMR (75 MHz, CDCl3): δ = 21.6, 110.0, 110.3, 120.9, 121.6, 122.7, 123.4, 123.9, 127.3, 127.5, 127.7, 129.8, 138.4, 141.6, 142.6, 144.2, 191.6. MS (EI): m/z = 478 [M+]. Anal. Calcd (%) for C33H22N2O2: C, 82.83; H, 4.63; N, 5.85. Found: C, 82.96; H, 4.72; N, 5.94.
  • 23 Stilbenophane 1a White solid; yield 18%; mp 172–173 °C. 1H NMR (300 MHz, CDCl3): δ = 2.48 (s, 6 H), 6.83 (s, 4 H), 7.18 (d, 4 H, J = 8.4 Hz), 7.27–7.43 (m, 16 H), 7.49 (d, 4 H, J = 8.1 Hz), 7.57 (s, 2 H), 8.01 (s, 4 H), 8.08 (d, 4 H, J = 7.5 Hz). 13C NMR (75 MHz, CDCl3): δ = 21.5, 109.4, 109.8, 120.2, 120.4, 121.4, 122.1, 123.4, 123.6, 126.0, 126.3, 126.7, 129.4, 130.0, 138.8, 139.5, 140.5, 141.6. MS–FAB: m/z = 894 [M+]. Anal. Calcd (%) for C66H44N4: C, 88.76; H, 4.97; N, 6.27. Found: 88.92; H, 4.82; N, 6.42.
  • 24 Stilbenophane 1b White solid; yield 15%; mp 164–166 °C. 1H NMR (300 MHz, CDCl3): δ = 2.43 (s, 6 H), 3.63 (s, 6 H), 6.84 (s, 4 H), 7.14 (d, 4 H, J = 8.3 Hz), 7.22–7.39 (m, 16 H), 7.47 (d, 4 H, J = 8.1 Hz), 8.02 (s, 4 H), 8.06 (d, 4 H, J = 7.6 Hz). 13C NMR (75 MHz, CDCl3): δ = 21.2, 52.8, 109.6, 109.9, 120.1, 120.6, 121.7, 122.4, 123.7, 123.9, 126.0, 126.4, 126.9, 129.7, 130.3, 138.7, 139.4, 140.5, 151.2. MS–FAB: m/z = 954 [M+]. Anal. Calcd (%) for C68H48N4O2: C, 85.69; H, 5.08; N, 5.88. Found: C, 85.82; H, 5.22; N, 5.98.
  • 25 Stilbenophane 2 White solid; yield 17%; mp 186–187 °C. 1H NMR (300 MHz, CDCl3): δ = 6.81 (s, 4 H), 7.18 (d, 4 H, J = 8.3 Hz), 7.24–7.40 (m, 12 H), 7.47 (d, 4 H, J = 8.1 Hz), 7.63 (d, 4 H, J = 6.7 Hz), 7.87 (t, 2 H, J = 6.8 Hz), 8.04 (s, 4 H), 8.10 (d, 4 H, J = 7.6 Hz). 13C NMR (75 MHz, CDCl3): δ = 109.8, 110.4, 116.7, 120.2, 120.5, 121.6, 122.2, 123.6, 126.2, 126.6, 129.8, 130.4, 138.8, 139.6, 140.6, 151.6. MS–FAB: m/z = 868 [M+]. Anal. Calcd (%) for C62H38N6: C, 85.89; H, 4.42; N, 9.69. Found: C, 85.72; H, 4.30; N, 9.60.
  • 26 Stilbenophane 3 White solid; yield 15%; mp 191–193 °C. 1H NMR (300 MHz, CDCl3): δ = 6.85 (s, 4 H), 7.23–7.47 (m, 20 H), 7.64 (d, 4 H, J = 6.9 Hz), 7.99 (s, 4 H), 8.08 (d, 4 H, J = 6.6 Hz). 13C NMR (75 MHz, CDCl3): δ = 109.8, 110.4, 120.3, 121.1, 121.4, 122.6, 123.8, 123.8, 126.4, 126.8, 129.5, 130.7, 136.0, 140.6, 141.7. MS–FAB: m/z = 878 [M+]. Anal. Calcd (%) for C60H36N4S2: C, 82.16; H, 4.14; N, 6.39. Found: C, 82.27; H, 4.31; N, 6.52.
  • 27 Stilbenophane 4 White solid; yield 12%; mp 191–193 °C. 1H NMR (300 MHz, CDCl3): δ = 1.45 (t, 6 H, J = 7.1 Hz), 4.40 (q, 4 H, J = 7.1 Hz), 6.87 (s, 4 H), 7.08 (s, 4 H), 7.12–7.27 (m, 8 H), 7.31–7.52 (m, 12 H), 7.61 (d, 4 H, J = 6.9 Hz), 7.72 (s, 4 H), 7.93 (d, 4 H, J = 8.1 Hz), 8.08 (d, 4 H, J = 6.6 Hz). 13C NMR (75 MHz, CDCl3): δ = 13.7, 38.1, 109.1, 110.2, 111.2, 120.1, 121.2, 121.4, 122.3, 122.6, 123.4, 123.7, 126.4, 124.6, 126.7, 126.9, 129.4, 130.6, 136.2, 140.4, 141.8. MS–FAB: m/z = 1100 [M+]. Anal. Calcd (%) for C80H54N6: C, 87.40; H, 4.95; N, 7.64. Found: C, 87.54; H, 4.82; N, 7.51.
  • 28 Stilbenophane 5 White solid; yield 15%; mp 202–204 °C. 1H NMR (300 MHz, CDCl3): δ = 0.39 (t, 12 H, J = 7.2 Hz), 2.00 (q, 8 H, J = 7.2 Hz), 6.84 (s, 4 H), 7.26–7.35 (m, 8 H), 7.46 (t, 4 H, J = 6.9 Hz), 7.56 (s, 4 H), 7.60–7.68 (m, 12 H), 7.93 (d, 4 H, J = 8.1 Hz), 8.11 (s, 4 H), 8.18 (d, 4 H, J = 7.8 Hz). 13C NMR (75 MHz, CDCl3): δ = 8.6, 30.9, 56.5, 109.1, 110.2, 120.3, 121.8, 122.9, 125.2, 126.1, 129.8, 130.4, 133.8, 136.8, 138.2, 139.7, 140.8, 142.6, 146.5, 148.8, 151.7, 153.5. MS–FAB: 1154 [M+]. Anal. Calcd (%) for C86H64N4: C, 89.55; H, 5.59; N, 4.86. Found: C, 89.72; H, 5.74; N, 4.96.
  • 29 Frisch A, Dennington RD. II, Keith TA. GaussView version 3.0. Gaussian Inc; Pittsburgh (PA, USA): 2003
  • 30 Hehre WJ, Radom L, Schleyer PV. R, Pople JA. Ab Initio Molecular Orbital Theory . Wiley-Interscience; New York: 1986
  • 31 Becke AD. Phys. Rev. A: At., Mol., Opt. Phys. 1988; 38: 3098
  • 32 Lee C, Yang W, Parr RG. Phys. Rev. B: Condens. Matter 1988; 37: 785
  • 33 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09 Revision A.02. Gaussian Inc; Wallingford (CT, USA): 2009
  • 34 Promarak V, Ruchirawat S. Tetrahedron 2007; 63: 1602
  • 35 Lai RY, Kong X, Jenekhe SA, Bard AJ. J. Am. Chem. Soc. 2003; 125: 12631
  • 36 Determination of the Association Constant by UV-Vis Spectroscopy (Benesi–Hildebrand Method) In a typical experiment, 3 mL of a standard stock solution of the cyclophane in MeCN–CH2Cl2 was placed in a quartz cuvette. A known amount of the electron-deficient guest molecule was added in incremental amounts and the changes in absorbance of the CT bands were recorded. Table 4 shows the charge-transfer complexation studies of stilbenophanes 2 with various concentrations of TCNQ. Plots of [concn of cyclophane]/absorbance vs. 1/concentration of guest were linear (Figure 7). From the slope and the intercept values K a (K a = intercept × slope–1) and ε (ε = intercept–1) were evaluated (Table 4). The plots were linear, suggesting that the predominant species in solution was a 1:1 complex.
  • 37 Benesi HA, Hildebrand JH. J. Am. Chem. Soc. 1949; 71: 2703