Synlett 2013; 24(9): 1044-1060
DOI: 10.1055/s-0032-1316913
account
© Georg Thieme Verlag Stuttgart · New York

From the Development of Catalysts for Alkyne and Alkyne–Nitrile [2+2+2] Cycloaddition Reactions to Their Use in Polymerization Reactions

Sentaro Okamoto*
Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan   Fax: +81(45)4139770   Email: okamos10@kanagawa-u.ac.jp
,
Yu-ki Sugiyama
Department of Material and Life Chemistry, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, 221-8686, Japan   Fax: +81(45)4139770   Email: okamos10@kanagawa-u.ac.jp
› Author Affiliations
Further Information

Publication History

Received: 07 February 2013

Accepted after revision: 18 March 2013

Publication Date:
12 April 2013 (online)


Abstract

Several systems consisting of a ligand, a metal compound, and zinc have been developed as catalysts for alkyne cycloaddition reactions and alkyne–nitrile co-cycloaddition reactions. N-Heterocyclic carbene (NHC)–iron(III) chloride–zinc, NHC–cobalt(II) chloride-zinc, and 2-{[(2,6-diisopropylphenyl)imino]methyl}pyridine (dipimp)–iron(III) chloride hexahydrate–zinc systems catalyzed intramolecular cyclotrimerization reactions of alkynes. The dipimp–cobalt(II) chloride hexahydrate–zinc system catalyzed cycloaddition reactions of a variety of alkynes in intramolecular, partially intramolecular, and fully intermolecular fashions. The ethane-1,2-diylbis(diphenylphosphine)–cobalt(II) chloride hexahydrate–zinc system was effective in catalyzing the [2 + 2 + 2] co-cycloaddition of diynes with nitriles. Nickel complexes with an ionic liquid-tagged ligand converted 1,6-diynes into the corresponding cyclooctatetraenes in a toluene–ionic liquid biphasic system in the presence of zinc. The dipimp–nickel(II) chloride hexahydrate–zinc catalyst polymerized 1,6-diynes to form conjugated polyene cyclic polymers. These results and their applications in synthesis, including controlled polymerization reactions, are described.

1 Introduction

2 Alkyne [2+2+2] Cycloaddition

2.1 Development of N-Heterocyclic Carbene–Cobalt or Iron Compound–Zinc Catalyst Systems

2.2 Development of 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Cobalt or Iron Salt–Zinc Catalyst Systems

2.2.1 Development of 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Iron Chloride–Zinc Catalyst Systems

2.2.2 Development of the 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Iron Chloride Hexahydrate–Zinc Catalyst System

2.3 The 2-{[(2,6-Diisopropylphenyl)imino]methyl}pyridine–Cobalt(II) Chloride Hexahydrate–Zinc Catalyst System

2.3.1 Reactivity and Functional Group Compatibility

2.3.2 Catalyst Activation

3 Alkyne–Nitrile [2+2+2] Co-cycloaddition

4 Applications

4.1 Uses in Organic Synthesis

4.2 Use as a Method for Polymer Synthesis

4.2.1 Preparation of Diverse Polymerizable Molecules (a Monomer Library)

4.2.2 Use in Polymer Functionalization

4.2.3 Use as a Polymerization Reaction

5 Other Reactions

5.1 Nickel-Catalyzed [2+2+2+2] Cycloaddition and Cycloaddition Polymerization of 1,6-Diynes

5.2 Hydroalkynylation of Internal Alkynes

6 Conclusion

 
  • References

    • 1a Grotjahn DB In Comprehensive Organometallic Chemistry II . Vol. 12. Abel EW, Stone FG. A, Wilkinson G. Pergamon; Oxford: 1995: 741
    • 1b Schore NE In Comprehensive Organic Synthesis . Vol. 5. Trost BM, Fleming I, Paquette LA. Pergamon; Oxford: 1991: 1129
    • 1c Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
    • 1d Malacria M, Aubert C, Renaud J.-L In Science of Synthesis . Vol. 1. Lautens M, Trost BM. Georg Thieme Verlag; Stuttgart: 2001: 439
    • 1e Yamamoto Y. Curr. Org. Chem. 2005; 9: 503
    • 1f Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 4741
    • 1g Gandon V, Aubert C, Malacria M. Curr. Org. Chem. 2005; 9: 1699
    • 1h Gandon V, Aubert C, Malacria M. Chem. Commun. 2006; 2209
    • 1i Tanaka K. Chem. Asian J. 2009; 4: 508
  • 3 Reppe W, Schweckendiek WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
    • 4a Bönnenmann H. Angew. Chem., Int. Ed. Engl. 1985; 24: 248
    • 4b Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
    • 4c Nakamura I, Yamamoto Y. Chem. Rev. 2004; 104: 2127
    • 4d Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
    • 4e Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
    • 5a Wakatsuki Y, Yamazaki H. J. Chem. Soc., Chem. Commun. 1973; 280
    • 5b Wakatsuki Y, Yamazaki H. J. Chem. Soc., Dalton Trans. 1978; 1278
    • 6a Chang CA, Francisco CG, Gadek TR, King JJ. A, Sternberg ED, Vollhardt KP. C In Organic Synthesis Today and Tomorrow . Trost BM, Hutchinson CR. Pergamon; Oxford: 1981: 71
    • 6b Vollhardt KP. C. Angew. Chem., Int. Ed. Engl. 1984; 23: 536
    • 6c Vollhardt KP. C. Pure Appl. Chem. 1985; 57: 1819
    • 6d Vollhardt KP. C. Pure Appl. Chem. 1993; 65: 153
    • 6e Eickmeier C, Holmes D, Junga H, Matzger AJ, Scherhag F, Shim M, Vollhardt KP. C. Angew. Chem. Int. Ed. 1999; 38: 800
    • 6f Aubert C, Buisine O, Petit M, Slowinski F, Malacria M. Pure Appl. Chem. 1999; 71: 1463
    • 6g Slowinski F, Aubert C, Malacria M. J. Org. Chem. 2003; 68: 378
  • 7 Geny A, Agenet N, Iannazzo L, Malacria M, Aubert C, Gandon V. Angew. Chem. Int. Ed. 2009; 48: 1810 ; and references cited therein

    • Recent examples of cobalt salt/Zn-catalyzed reactions other than cyclotrimerizations; for Alder–ene reactions of alkynes, see:
    • 8a Hilt G, Treutwein J. Chem. Commun. 2009; 1395
    • 8b Kersten L, Roesner S, Hilt G. Org. Lett. 2010; 12: 4920
    • 8c Arndt M, Reinhold A, Hilt G. J. Org. Chem. 2010; 75: 5203
    • 8d Hilt G, Arndt M, Weske DF. Synthesis 2010; 1321
    • 8e Hilt G, Erver F, Harms K. Org. Lett. 2011; 13: 304

    • For hydroalkynylation reactions, see:
    • 8f Sawano T, Ou K, Nishimura T, Hayashi T. Chem. Commun. 2012; 48: 6106

    • For addition of silylacetylenes to enones and dienones, see:
    • 8g Nishimura T, Sawano T, Ou K, Hayashi T. Chem. Commun. 2011; 47: 10142
    • 8h Sawano T, Ashouri A, Nishimura T, Hayashi T. J. Am. Chem. Soc. 2012; 134: 18936

    • For Diels–Alder reactions, see:
    • 8i Erver F, Kuttner JR, Hilt G. J. Org. Chem. 2012; 77: 8375
    • 8j Danz M, Hilt G. Adv. Synth. Catal. 2011; 353: 303
    • 8k Auvinet A.-L, Harrity JP. A, Hilt G. J. Org. Chem. 2010; 75: 3893
    • 8l Hilt G, Janikowski J. Org. Lett. 2009; 11: 773

    • For 1,4-hydrovinylation reactions, see:
    • 8m Hilt G. Synlett 2011; 1654
    • 8n Kersten L, Hilt G. Adv. Synth. Catal. 2012; 354: 863
    • 8o Erver F, Hilt G. Org. Lett. 2011; 13: 5700
    • 8p Hilt G, Roesner S. Synthesis 2011; 662 ; and refs. 8c and 8d

    • For reductive coupling reactions, see:
    • 8q Wei C.-H, Mannathan S, Cheng C.-H. Angew. Chem. Int. Ed. 2012; 51: 10592
    • 8r Mannathan S, Cheng C.-H. Chem. Eur. J. 2012; 18: 11771
    • 8s Wei C.-H, Mannathan S, Cheng C.-H. J. Am. Chem. Soc. 2011; 133: 6942
    • 8t Mannathan S, Cheng C.-H. Chem. Commun. 2010; 46: 1923
    • 8u Wong Y.-C, Parthasarathy K, Cheng C.-H. J. Am. Chem. Soc. 2009; 131: 18252

      For titanium, see:
    • 9a Sato F, Okamoto S. Adv. Synth. Catal. 2001; 343: 759
    • 9b Sato F, Urabe H, Okamoto S. Chem. Rev. 2000; 100: 2835
    • 9c Sato F, Urabe H, Okamoto S. Synlett 2000; 753
    • 9d Kawaji T, Shoji N, Miyashita K, Okamoto S. Chem. Commun. 2011; 47: 7857 ; and references cited therein

    • For other metals, see:
    • 9e http://apchem2.kanagawa-u.ac.jp/~okamotolab/index.html (accessed March 28th, 2013).
    • 10a Wanzlick HW, Schönherr H.-J. Angew. Chem., Int. Ed. Engl. 1968; 7: 141
    • 10b Öfele K. J. Organomet. Chem. 1968; 12: P42
    • 10c Arduengo AJ. III, Dias HV. R, Harlow RL, Kline M. J. Am. Chem. Soc. 1992; 114: 5530
    • 10d Arduengo AJ. III, Harlow RL, Kline M. J. Am. Chem. Soc. 1991; 113: 361
    • 10e Herrmann WA, Köcher C. Angew. Chem., Int. Ed. Engl. 1997; 36: 2162
    • 10f Arduengo AJ. III. Acc. Chem. Res. 1999; 32: 2, 913
    • 10g Bourissou D, Guerret O, Gabbaï FP, Bertrand G. Chem. Rev. 2000; 100: 39
    • 10h Weskamp T, Böhm VP. W, Herrmann WA. J. Organomet. Chem. 2000; 600: 12
    • 10i Herrmann WA. Angew. Chem. Int. Ed. 2002; 41: 1290
    • 10j Cavell KJ, McGuinness DS. Coord. Chem. Rev. 2004; 248: 671
    • 10k Cowley AH. J. Organomet. Chem. 2001; 617: 105
    • 10l Enders D, Gielen H. J. Organomet. Chem. 2001; 617: 70
    • 10m Herrmann WA, Weskamp T, Böhm VP. W. Adv. Organomet. Chem. 2001; 48: 1
    • 10n Jafarpour L, Nolan SP. Adv. Organomet. Chem. 2001; 46: 181
    • 10o N-Heterocyclic Carbenes in Synthesis . Nolan SP. Wiley-VHC; Weinheim: 2006
    • 11a Tominaga S, Oi Y, Kato T, Am DK, Okamoto S. Tetrahedron Lett. 2004; 45: 5585
    • 11b Okamoto S, Tominaga S, Saino N, Kase K, Shimoda K. J. Organomet. Chem. 2005; 690: 6001
    • 11c Okamoto S, Tominaga S, Saino N, Kase K, Shimoda K. J. Organomet. Chem. 2007; 692: 2114
  • 12 McCormick MM, Duong HA, Zuo G, Louie J. J. Am. Chem. Soc. 2005; 127: 5030
  • 13 Saino N, Kogure D, Okamoto S. Org. Lett. 2005; 7: 3065
    • 14a Cámpora J, del Mar Conejo M, Mereiter K, Palma P, Pérez C, Reyes ML, Ruiz C. J. Organomet. Chem. 2003; 683: 220

    • For catalysis using dipimp, see:
    • 14b Wu JY, Moreau B, Ritter T. J. Am. Chem. Soc. 2009; 131: 12915
    • 14c Kanas DA, Geier SJ, Vogels CM, Decken A, Westcott SA. Inorg. Chem. 2008; 47: 8727
    • 14d Bianchini C, Lee AM, Mantovani G, Meli A, Oberhauser W. New J. Chem. 2002; 26: 387
    • 14e Shejwalkar P, Rath NP, Bauer EB. Dalton Trans. 2011; 40: 7617

    • For polymerizations, see:
    • 14f Britovsek GJ. P, Baugh SP. D, Hoarau O, Gibson VC, Wass DF, White AJ. P, Williams DJ. Inorg. Chim. Acta 2003; 345: 279
    • 14g Laine TV, Piironen U, Lappalainen K, Klinga M, Aitola E, Leskelä M. J. Organomet. Chem. 2000; 606: 112
    • 14h Köppl A, Alt HG. J. Mol. Catal. A: Chem. 2000; 154: 45
  • 15 Saino N, Kogure D, Kase K, Okamoto S. J. Organomet. Chem. 2006; 691: 3129
  • 16 Bönnemann H, Brinkmann R, Schenkluhn H. Synthesis 1974; 575
    • 17a Chiusoli GP, Costa M, Reverberi S, Terenghi MG. Transition Met. Chem. 1989; 14: 238
    • 17b Chiusoli GP, Terenghi G. Transition Met. Chem. 1984; 9: 360
  • 18 Slowinski F, Aubert C, Malacria M. Adv. Synth. Catal. 2001; 343: 64
    • 19a Hilt G, Hengst C, Hess W. Eur. J. Org. Chem. 2008; 2293
    • 19b Hilt G, Vogler T, Hess W, Galbiati F. Chem. Commun. 2005; 1474
    • 19c Hilt G, Hess W, Vogler T, Hengst C. J. Organomet. Chem. 2005; 690: 5170

      For cycloadditions catalyzed by CoI2(PPh)2–Zn or CoI2(dppe)–Zn, see:
    • 20a Chao KC, Rayabarapu DK, Wang C.-C, Cheng C.-H. J. Org. Chem. 2001; 66: 8804
    • 20b Wu M.-S, Rayabarapu DK, Cheng C.-H. Tetrahedron 2004; 60: 10005
    • 20c Chang H.-T, Jeganmohan M, Cheng C.-H. Chem. Commun. 2005; 4955
  • 21 Saino N, Amemiya F, Tanabe E, Kase K, Okamoto S. Org. Lett. 2006; 8: 1439
  • 22 Saino N.; Ph.D. Thesis; Kanagawa University: Japan, 2009.
  • 23 Unpublished results.
  • 24 Sugiyama Y.; Ph.D. Thesis; Kanagawa University: Japan, 2013.
  • 25 Goswami A, Ito T, Okamoto S. Adv. Synth. Catal. 2007; 349: 2368
  • 26 Sugiyama Y, Kariwa T, Sakurada T, Okamoto S. Synlett 2012; 23: 2549
    • 27a Kase K, Goswami A, Ohtaki K, Tanabe E, Saino N, Okamoto S. Org. Lett. 2007; 9: 931
    • 27b Sugiyama Y, Okamoto S. Synthesis 2011; 2247

      For related intramolecular reactions catalyzed by CoI2(dppe)–Zn, see:
    • 28a Chang H.-T, Jeganmohan M, Cheng C.-H. Org. Lett. 2007; 9: 505

    • For recent reports on iron-based instant catalysts, see:
    • 28b D’Souza BR, Lane TK, Louie J. Org. Lett. 2011; 13: 2936
    • 28c Wang C, Li X, Wu F, Wan B. Angew. Chem. Int. Ed. 2011; 50: 7162
  • 29 Okamoto S. Heterocycles 2012; 85: 1579

    • For reviews, see :
    • 30a Inglesby PA, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
    • 30b Shaaban MR, El-Sayed R, Elwahy AH. M. Tetrahedron 2011; 67: 6095
    • 30c Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
    • 30d Broere DL. J, Ruijter E. Synthesis 2012; 44: 2639

    • For recent examples, see:
    • 30e Radha BholaB, Bally T, Valente A, Cyranski MK. Angew. Chem. Int. Ed. 2010; 49: 399
    • 30f Elwahy AH. M, Hafner K. Eur. J. Org. Chem. 2010; 265
    • 30g Opekar S, Turek P, Pohl R, Klepetárová B, Vortruba I, Hocek M, Kotora M. Heterocycles 2010; 82: 895
    • 30h Welsch T, Tran H.-A, Witulski B. Org. Lett. 2010; 12: 5644
    • 30i Konno T, Moriyasu K, Kinugawa R, Ishihara T. Org. Biomol. Chem. 2010; 8: 1718
    • 30j Nicolaus N, Schmalz H.-G. Synlett 2010; 2071
    • 30k Suryawanshi SB, Dushing MP, Gonnade RG, Ramana CV. Tetrahedron 2010; 66: 6085
    • 30l Iannazzo L, Vollhardt KP. C, Malacria M, Aubert C, Gandon V. Eur. J. Org. Chem. 2011; 3283
    • 30m Yanney M, Fronczek FR, Henry WP, Beard DJ, Sygula A. Eur. J. Org. Chem. 2011; 6636
    • 30n Zou Y, Liu Q, Deiters A. Org. Lett. 2011; 13: 4352
    • 30o Kawatsura M, Yamamoto M, Namioka J, Kajita K, Hiraoka T, Itoh T. Org. Lett. 2011; 13: 1001
    • 30p Dushing MP, Ramana CV. Tetrahedron Lett. 2011; 52: 4627
    • 30q Ramana CV, Dushing MP, Mohapatra S, Mallik R, Gonnade RG. Tetrahedron Lett. 2011; 52: 38
    • 30r Melnes S, Bayer A, Gautun OR. Tetrahedron 2012; 68: 8463
  • 31 Zhang G, Yang G, Wang S, Chen Q, Ma JS. Chem. Eur. J. 2007; 13: 3630 ; and references cited therein
    • 32a Bradsher CK. Chem. Rev. 1946; 38: 447
    • 32b Miller JB. J. Org. Chem. 1966; 31: 4082
    • 32c Guyot A, Catel J. Bull. Soc. Chim. Fr. 1906; 35: 1121
    • 32d Guyot A, Catel J. Bull. Soc. Chim. Fr. 1906; 35: 567
    • 32e Li G, Zhou S, Su G, Liu Y, Wang PG. J. Org. Chem. 2007; 72: 9830
  • 33 Saino N, Kawaji T, Ito T, Matsushita Y, Okamoto S. Tetrahedron Lett. 2010; 51: 1313
    • 34a Engel JF, Staetz CA, Young ST, Crosby GA In Recent Advances in the Chemistry of Insect Control: The Proceedings of a Symposium Organised by the Fine Chemicals and Medicinals Group of the Industrial Division of the Royal Society of Chemistry and the Pesticides Group of the Society of Chemical Industry, Cambridge, England, 25–27th September 1984. 1. Janes NF. Royal Society of Chemistry; London: 1985: 62
    • 34b Engel JF. US 4429149 1984
    • 34c Scott JG, Georghiou GP. Pestic. Sci. 1986; 17: 195

    • For the divalent titanium-mediated synthesis, see:
    • 34d Hanazawa T, Sakaki K, Takayama Y, Sato F. J. Org. Chem. 2003; 68: 4980
    • 35a Grosshenny V, Harriman A, Ziessel R. Angew. Chem., Int. Ed. Engl. 1995; 34: 2705
    • 35b Belser P, Dux R, Baak M, De Cola L, Balzani V. Angew. Chem., Int. Ed. Engl. 1995; 34: 595
    • 35c Dhenaut C, Ledoux I, Samuel ID. W, Zyss J, Bourgault M, Le Bozec H. Nature 1995; 374: 339
    • 35d Eichen Y, Lehn J.-M, Scherl M, Haarer D, Fischer J, DeCian A, Corval A, Trommsdorff HP. Angew. Chem., Int. Ed. Engl. 1995; 34: 2530
    • 35e Kaes C, Katz A, Hosseini MW. Chem. Rev. 2000; 100: 3553
    • 35f Cordaro JG, McCusker JK, Bergman RG. Chem. Commun. 2002; 1496 ; and references cited therein
  • 36 Goswami A, Ohtaki K, Kase K, Ito T, Okamoto S. Adv. Synth. Catal. 2008; 350: 143
  • 37 Watanabe J, Sugiyama Y, Nomura A, Azumatei S, Goswami A, Saino N, Okamoto S. Macromolecules 2010; 43: 2213
    • 38a Li Z, Lam JW. Y, Dong Y, Dong Y, Sung HH. Y, Williams ID, Tang BZ. Macromolecules 2006; 39: 6458
    • 38b Häussler M, Liu J, Zheng R, Lam JW. Y, Qin A, Tang BZ. Macromolecules 2007; 40: 1914
    • 38c Jim CK. W, Qin A, Lam JW. Y, Häussler M, Liu J, Yuen MM. F, Kim JK, Ng KM, Tang BZ. Macromolecules 2009; 42: 4099
    • 38d Hu R, Lam JW. Y, Liu J, Sung HH. Y, Williams ID, Yue Z, Wong KS, Yuen MM. F, Tang BZ. Polym. Chem. 2012; 3: 1481
  • 39 Hecht S, Fréchet JM. J. J. Am. Chem. Soc. 1999; 121: 4084
  • 40 Sugiyama Y, Kato R, Sakurada T, Okamoto S. J. Am. Chem. Soc. 2011; 133: 9712
    • 41a Wu R, Al-Azemi TF, Bisht KS. Macromolecules 2009; 42: 2401
    • 41b Aoi K, Miyamoto M, Chujo Y, Saegusa T. Macromol. Symp. 2002; 183: 53
    • 41c Shibasaki Y, Sanada H, Yokoi M, Sanda F, Endo T. Macromolecules 2000; 33: 4316
    • 41d Haucourt NH, Peng L, Goethals EJ. Macromolecules 1994; 27: 1329
    • 41e Ariga T, Takata T, Endo T. Macromolecules 1993; 26: 7106
  • 42 Sugiyama Y, Okamoto S manuscript in preparation.
  • 43 Wilke G. Pure Appl. Chem. 1978; 50: 677
  • 44 Wender PA, Christy JP. J. Am. Chem. Soc. 2007; 129: 13402
  • 45 Goswami A, Ito T, Saino N, Kase K, Matsuno C, Okamoto S. Chem. Commun. 2009; 439
  • 46 Sakurada T, Sugiyama Y, Okamoto S. J. Org. Chem. 2013; 78: 3583