Synthesis 2012; 44(17): 2673-2681
DOI: 10.1055/s-0032-1316744
short review
© Georg Thieme Verlag Stuttgart · New York

Pyrrolizidine Alkaloids Pyrrolams A–D: A Survey of Synthetic Efforts, Biological Activity, and Studies on Their Stability

Mahesh S. Majik*
a   Bio-organic Chemistry Laboratory, CSIR-National Institute of Oceanography, Dona-Paula Goa 403 004, India
,
Santosh G. Tilve
b   Department of Chemistry, Goa University, Taleigao Plateau, Goa 403 206, India, Email: majikms@gmail.com
› Author Affiliations
Further Information

Publication History

Received: 02 May 2012

Accepted after revision: 21 June 2012

Publication Date:
31 July 2012 (online)


Abstract

Pyrrolam A is a microbial metabolite, structurally related to plant alkaloids of the necine-type, and was isolated from the bacterial strain of Streptomyces olivaceus along with the related alkaloids pyrrolams B–D. The synthesis of (S)- and (R)-pyrrolam A has attracted the attention of chemists in recent years, with 10 syntheses reported to date. The reported routes utilize the advantages of chiral proline as a starting material, with pyrrolidine nucleus as source of one of the two rings on which the second ring has been constructed. This review discusses the isolation of the deceptively simple pyrrolizidine alkaloid pyrrolam A, its biological studies, synthesis, and computational studies on the stability of the double bond in its strained bicyclic skeleton. In addition, the synthesis of pyrrolams B–C and their relationship to pyrrolam A is also discussed.

 
  • References

    • 1a Saha N, Tanmoy B, Chattopadhyay SK. Org. Lett. 2011; 13: 5128
    • 1b Holger S, Michael W. Biotechnol. J. 2009; 4: 1684
    • 1c Nodwell M, Zimmerman C, Roberge M, Andersen RJ. J. Med. Chem. 2010; 53: 7843
    • 2a Mirka M. Phytochem. Rev. 2011; 10: 75
    • 2b Roeder E, Wiedenfeld H. Pharmazie 2011; 66: 63
    • 2c Ojima I, Iula DM. Alkaloids: Chem. Biol. Perspect. 1999; 13: 371
    • 3a Anke S, Gonde D, Kaltenegger E, Hänsch R, Theuring C, Ober D. Plant Physiol. 2008; 148: 751
    • 3b Ding G, Liu S, Guo L, Zhou Y, Che Y. J. Nat. Prod. 2008; 71: 615
    • 3c Singh B, Bhat TK, Singh B. J. Agric. Food Chem. 2003; 51: 5579
    • 4a Daly JW, Wilham JM, Spande TF, Garraffo HM, Gil RR, Silva GL, Vaira M. J. Chem. Ecol. 2007; 33: 871
    • 4b Daly JW, Spande TF, Garraffo HM. J. Nat. Prod. 2005; 68: 1556
    • 4c Ma S, Ni B. Org. Lett. 2002; 4: 639
    • 5a Kim H.-Y, Stermitz FR, Li JK.-K, Coulombe RA. Jr. Food Chem. Toxicol. 1999; 37: 619
    • 5b Wink M, Schneller T, Latz-Bruning B. J. Chem. Ecol. 1998; 24: 1881
    • 6a Qi L.-W, Liu E.-H, Chu C, Peng Y.-B, Cai H.-X, Li P. Curr. Top. Med. Chem. (Sharjah, United Arab Emirates) 2010; 10: 434
    • 6b Wang SF, Liu AY, Ridsdill-Smith TJ, Ghisalberti EL. J. Chem. Ecol. 2000; 26: 429
    • 7a Ober D, Kaltenegger E. Phytochemistry 2009; 70: 1687
    • 7b Langel D, Ober D, Pelser PB. Phytochem. Rev. 2011; 10: 3
    • 7c Dreger M, Stanisławska M, Krajewska-Patan A, Mielcarek S, Mikołajczak PL, Buchwald W. Herba Pol. 2009; 55 (04) 127
    • 8a Despinoy XL. M, McNab H. Tetrahedron 2000; 56: 6359
    • 8b Liddell JR. Nat. Prod. Rep. 1999; 16: 499
    • 8c Casiraghi G, Zanardi F, Rassu G, Pinna L. Org. Prep. Proced. Int. 1996; 28: 643
    • 8d Liddell JR. Nat. Prod. Rep. 1996; 13: 187
    • 8e Robins DJ. Nat. Prod. Rep. 1995; 12: 413
    • 8f Robins DJ. Nat. Prod. Rep. 1992; 9: 313
    • 9a De Faria AR, Salvador EL, Correia RD. J. Org. Chem. 2002; 67: 3651
    • 9b Denmark SE, Thorarensen A. J. Am. Chem. Soc. 1997; 119: 125
    • 9c Gruszecka-Kowalik E, Zalkow LH. J. Org. Chem. 1990; 55: 3398
    • 10a Compain P, Martin OR. Bioorg. Med. Chem. 2001; 9: 3077
    • 10b Watson AA, Fleet GW. J, Asano N, Molyneux RJ, Nash RJ. Phytochemistry 2001; 56: 265
    • 10c Asano N, Kato A, Watson AA. Mini-Rev. Med. Chem. 2001; 1: 145
    • 10d Asano N, Nash RJ, Molyneux RJ, Fleet GW. J. Tetrahedron: Asymmetry 2000; 11: 1645
  • 11 Grote R, Zeeck A, Stümpfel J, Zähner H. Liebigs Ann. Chem. 1990; 525
    • 12a Liddell JR. Nat. Prod. Rep. 2001; 18: 441
    • 12b Harborne JB. Nat. Prod. Rep. 2001; 18: 361
    • 12c Trigo JR. J. Braz. Chem. Soc. 2000; 11: 551
    • 12d Rizk AM. Naturally Occurring Pyrrolizidine Alkaloids. CRC Press; Boca Raton: 1991
  • 13 Watson RT, Gore VK, Chandupatla KR, Dieter RK, Snyder JP. J. Org. Chem. 2004; 69: 6105
  • 14 Jizba J, Samoukina GV, Ivanova-Kovacheva T, Kandybin NV. Folia Microbiol. (Dordrecht, Neth.) 1992; 37: 461
  • 15 Jizba J, Sedmera P, Zima J, Beran M, Blumauerovama M, Kandybin NV, Samoukina GV. Folia Microbiol. (Dordrecht, Neth.) 1991; 36: 437
  • 16 Nakata T. Chem. Soc. Rev. 2010; 39: 1955
  • 17 Aoyagi Y, Manabe T, Ohta A, Kurihara T, Pang G.-L, Yuhara T. Tetrahedron 1996; 52: 869
    • 18a Murray A, Proctor GR, Murray PJ. Tetrahedron Lett. 1995; 36: 291
    • 18b Murray A, Proctor GR, Murray PJ. Tetrahedron 1996; 52: 3757
  • 19 Giovenzana G, Sisti M, Palmisano G. Tetrahedron: Asymmetry 1997; 8: 515
  • 20 Nicolaou KC, Bulger PG, Sarlah D. Angew. Chem. Int. Ed. 2005; 44: 4490
    • 21a Arisawa M, Takezawa E, Nishida A, Mori M, Nakagawa M. Synlett 1997; 1179
    • 21b Arisawa M, Takahashi M, Takezawa E, Yamaguchi T, Torisawa Y, Nishida A, Nakagawa M. Chem. Pharm. Bull. 2000; 48: 1593
  • 22 Majik MS, Tilve SG, Parameswaran PS. Synthesis 2007; 663
  • 23 Schobert R, Wicklein A. Synthesis 2007; 1499
  • 24 Majik MS, Parameswaran PS, Tilve SG. Helv. Chim. Acta 2008; 91: 1500
  • 25 Huang PQ, Chen QF, Chen CL, Zhang HK. Tetrahedron: Asymmetry 1999; 10: 3827
  • 26 Louwrier S, Ostendorf M, Boom A, Hiemstra H, Speckamp WN. Tetrahedron 1996; 52: 2603
  • 27 Hoppe D, Hense T. Angew. Chem. Int. Ed. 1997; 36: 2282
  • 28 Mo F, Li F, Qiu D, Wang J. Tetrahedron 2010; 66: 1274
  • 29 Dong C, Deng G, Wang J. J. Org. Chem. 2006; 71: 5560
    • 30a Giordan M. J. Comput. Chem. 1998; 19: 1853
    • 30b Giordan M, Custodio R, Trigo JR. J. Comput. Chem. 1996; 17: 156